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ABSTRACT 

The Joint Technical Coordinating Group for Munitions 

Effectiveness desires a standardized toolbox and 

methodologies for evaluating weapons accuracy. Using 

statistical distributions, a method is presented for both 

unguided and Global Positioning System-guided munitions. 

The statistics used to describe a sample of weapons firings 

will not only describe the weapons’ accuracy, but will also 

be utilized by the Joint Weaponeering System to calculate 

the weapons’ effectiveness against specified targets. Since 

the precision of the inputs and statistics used to describe 

the accuracy of the weapons is sensitive, it is imperative 

that the inputs are accurately modeled as they can lead to 

drastically different effectiveness results. Analysts must 

also carefully consider the assumptions used in the 

application of specific statistical distributions. The 

toolbox and methods presented here illustrate the 

differences among techniques and the pros and cons of each.  
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I. INTRODUCTION AND OBJECTIVES 

The Joint Technical Group for Munitions Effectiveness 

(JTCG/ME) receives weaponeering data from multiple services 

and representatives. Often the methodologies used to 

evaluate the data are different and not standardized. It is 

not that the methodologies employed are incorrect, but that 

the various procedures and descriptive statistics used lack 

consistency.  

The objective of this thesis is to develop a standard 

process that can be utilized by all services and 

evaluators. In order to leverage computing power, MATLAB 

will be used to produce a toolbox that outputs the required 

parameters in a consistent manner. Upon implementation of 

the toolbox, the JTCG/ME will have a set of processes and 

tools that create standardized solutions to weapons 

accuracy evaluations. 
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II. STATISTICS BACKGROUND 

In evaluating the effectiveness and accuracy of 

weapons systems, we rely largely on statistical analysis to 

predict the accuracy of an upcoming weapons firing given 

the historical accuracy. These statistical values establish 

metrics for comparison among different systems and set the 

stage for evaluating which weapon is appropriate for a 

given scenario. The precision of this data is crucial as it 

will feed weapon effectiveness calculations, which are used 

to determine the probability of kill. This directly affects 

the number of weapons delivered to a target. The purpose of 

this chapter is to present the statistical concepts used 

throughout this thesis as they are applied to evaluate 

weapon accuracy.  

A. SAMPLES, MEAN, AND VARIANCE 

In all cases, we will evaluate independent samples of 

random occasions, shots or volleys, at a target. Suppose we 

are given a sample of 100 miss distances for an unguided 

bomb at a stationary target. We define the mean or average 

miss distance in Equation (1), where n is the sample size. 

 
1 2 100

1

1 1
( ... )

100

n

i
i

x x x x x
n 

      (1) 

Summing all the miss distances and dividing by the 

total number of observations results in the average miss 

distance. Additionally, it is useful to identify a quantity 

known as the sample variance, which is defined in Equation 

(2). 
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  (2) 

Although variance is not commonly utilized in practice, the 

square root of the variance is defined as the standard 

deviation (Sx) and is more widely utilized. The standard 

deviation is the measure of spread within the sample from 

the mean. To provide a visual example, Figure 1 represents 

a distribution of miss distances with x = 0 and Sx = 1.088. 

 
Figure 1.  Distribution of miss distances  
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B. UNIVARIATE NORMAL DISTRIBUTION 

In an effort to describe the data shown in Figure 1, 

it is desirable to generate a curve that represents the 

likelihood of an event or occurrence. If we assume that the 

miss distance is a continuous random variable, x, we can 

write the probability density function (PDF) for a normal 

distribution as defined in Equation (3). 

 

2 21
( ) exp ( ) / 2

2
f x x  

 
      (3) 

Written in this manner, the symbols μ and σ represent the 

mean and standard deviation of the sample, respectively. 

These are more common symbolic representations of the 

statistics and will be used from here forward. A pictorial 

example of the normal PDF is shown in Figure 2. This 

depiction illustrates a sample with a slightly negative 

bias, or negative mean.  

 
Figure 2.  Normal probability density function (from [1]) 

This smooth, symmetrical, bell-shaped curve seemingly 

fits weapon accuracy data well [1]. The data in this case 

is characterized by a large number of hits, with the number 

of hits decreasing in frequency as you move away from the 
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target. The area under the PDF represents the probability 

of occurrence, and is pictorially shown in Figure 3.  

 
Figure 3.  Probability area under a normal curve (from [1]) 

Thus, to find the probability of getting a miss 

distance between a and b, we integrate the PDF from a to b. 

Similarly, to find the probability that an event is less 

than or equal to X, we integrate the PDF from minus 

infinity to X. This integration results in the cumulative 

density function (CDF) and is written in Equation (4) for 

the normal distribution. 

 

2 21
( ) ( ) ( ) exp ( ) / 2

2

x X x X

x x

F X P x X f x dx x dx 
 

 

 

          (4) 

Integrating the CDF from minus infinity to infinity will 

result in a value of one (the probability of occurrence 

cannot be greater the one). The solution to Equation (4) is 

not trivial and is most often tabulated. A transformation 

to a standard normal distribution allows for use of the 

tabular values but will not be discussed here. See 

reference [2] for more information regarding this 

transformation. 
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C. BIVARIATE NORMAL DISTRIBUTION 

In weaponeering applications it is common to assume 

that the miss distances in range and deflection are both 

independent and normally distributed [1]. Here, the miss 

distance in range is plotted on the vertical axis defined 

as the x-axis (short or long from the desired impact  

point) and the miss distance in deflection is plotted on 

the horizontal axis defined as the y-axis (left or right of 

the desired impact point). This is opposite of the  

standard mathematical convention. As the two distributions 

will not have the same values for mean and standard 

deviation, the samples can be represented by Equation (5); 

the bivariate normal PDF for independent and uncorrelated 

values of x and y.	 

 

22

2 2

( )( )1
( , ) exp

2 2 2

yx

x y x y

yx
f x y



   


  

 
 
 

  (5) 

As before, we can integrate the PDF, which results in the 

CDF for the bivariate normal distribution in Equation (6). 

In this equation, we are determining the probability of and 

event being less than both X and Y, respectively. 

 

22

2 2

( )( )1
exp

2 2 2
( , )

y Yx X
yx

x y x y x y

yx
dx dyF X Y


   



 


  

 
 
 

   (6) 

A pictorial example of the bivariate normal distribution is 

shown in Figure 4. It is not common, however, to evaluate 

data using the form in Equation (6). If the samples are 

independent and identically distributed, we are able to 

evaluate their statistics by using the univariate normal 

distribution and then exploiting convinces in calculating 

probabilities that will be discussed later.  
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Figure 4.  Bivariate normal distribution (from [1]) 

D. CIRCULAR NORMAL DISTRIBUTION 

A circular normal distribution is a particular case of 

the bivariate normal distribution. In the case where the 

independent samples in range and deflection have means 

equal to zero and standard deviations that are equal in 

magnitude, the resulting distribution is called the 

circular normal distribution. The circular normal PDF is 

written in Equation (7). 

 

2 2 2

2 2 2 2 2

21 1
( , ) exp exp

2 2 2 2 2

x y x
f x y

y

    
   

   
   

   
 (7) 

In most cases, weaponeering miss distances in range and 

deflection will not meet the criteria to fit a circular 

normal distribution as the standard deviations in range and 
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deflection are rarely equal in magnitude. Rather than 

assume that the independent samples meet the criteria to be 

modeled by a circular normal distribution, we convert the 

data in range and deflection to radial miss distances, as 

in Equation (8). 

 
2 2 2r x y   (8) 

In order to emphasize the change in orientation, the x 

value corresponds to the miss distance in range and the y 

value corresponds to a miss distance in deflection. We will 

limit our discussion of the circular normal distribution 

here, as once the data is converted to radial miss 

distances its properties change.  

E. RAYLEIGH DISTRIBUTION 

The principles of the circular normal distribution are 

not easy to implement and it is uncommon that independent 

weapon firings will have miss distances in range and 

deflection that are identical univariate normal 

distributions. Rather than force the assumptions required 

by a circular normal distribution for statistical analysis, 

converting to radial miss distances results in much more 

convenient and accurate mathematical expressions. The 

resulting radial miss distances are not normally 

distributed. The resulting distribution is known as the 

Rayleigh distribution. The PDF and CDF for the Rayleigh 

distribution are shown in Equations (9) and (10). 

 
2

2 2
( ) exp

2

r r
f r

 
 

  
 

 (9) 
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2

2
( ) 1 exp

2

R
F R


 

   
 

 (10) 

It is imperative to illustrate a key difference in this 

distribution compared to those previously presented. The 

standard deviation in Equations (9) and (10) is not the 

standard deviation of the radial miss distances, but rather 

the common, or average, standard deviation of the range and 

deflection miss distances [1]. Usually, the standard 

deviation implemented in the Rayleigh distribution, denoted 

as σc, is written as in Equation (11). 

 

 
2

x y

c

 



  (11) 

In the event that the data for range and deflection is 

unknown and the only data recorded is the radial miss 

distances, we can still find the common standard deviation. 

Exploiting statistical relationships between distributions, 

one can show that the common standard deviation is related 

to the standard deviation of the sample of radial miss 

distances by 
r
  0.655*

c
, where σr is the standard deviation 

of the radial miss distances [1]. 

There are drawbacks to converting to radial miss 

distance as opposed to analyzing both range and deflection 

miss distances independently. Mainly, combining the 

standard deviations in range and deflection can 

significantly skew the data if the dispersions of each 

distribution are not close in magnitude. Consider artillery 

firings, in which it is common to have misses with a large 

dispersion in range and very little dispersion in 

deflection [3]. Converting to radial miss distances will 
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skew this fact and, unless range and deflection are 

evaluated separately, this fact will never be recovered. 

The positive in implementing the Rayleigh distribution is 

that unlike the univariate normal distribution, the value 

of the CDF for the Rayleigh distribution can be explicitly 

calculated and does not need tabular values to approximate 

the solution. A pictorial example of the Rayleigh 

distribution is provided Figure 5. 

 
Figure 5.  Rayleigh PDF 

F. PROBABILITIES 

The goal of fitting the data to the distributions 

described in this chapter is to calculate the probability 

of a miss for an occurrence. Ideally, the miss distance 

would always be zero and we would hit the target with every 

shot. In reality, this is unlikely. In order to exploit 
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some properties of probability, we must define independent 

events. We say that two events are independent of one 

another if the occurrence of one has no influence on the 

probability of the other [2]. For instance, the miss 

distance in range is assumed to be independent of the miss 

distance in deflection. Applying the special multiplication 

rule for independent events provided in Equation (12), we 

are able to evaluate range and deflection miss distances 

separately and still calculate a single probability of 

hitting the target.   

 (  and ) ( ) ( )P A B P A P B   (12) 
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III. WEAPONEERING BACKGROUND 

Although the statistics described in the previous 

chapter are useful when talking about the properties of the 

distributions, we must bridge the gap between the 

statistics and the terminology used by weaponeers. In this 

section, we will define terms utilized in weaponeering 

applications and show how the statistics relate to these 

terms.  

A. DEFINITIONS 

As mentioned previously, miss distances in the x axis 

direction are misses in range. This axis is aligned with 

the direction of travel on the weapon. Misses in the y axis 

direction are perpendicular to the direction of motion  

of the projectile and are in the deflection direction. The 

point at which we are aiming is called the desired point of 

impact (DPI). If we were to average all the miss distances 

in range and plot a horizontal line, this value would 

represent a range bias. Similarly, if we average all  

the miss distances in deflection and plot a vertical line, 

this would represent a deflection bias. The point where 

these two biases meet is called the mean point of impact 

(MPI) [1]. These concepts are pictorially represented in 

Figure 6. 
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Figure 6.  Distribution of impact points (from [1]) 

B. ERROR PROBABLE 

Rather than discussing the specific statistics (mean 

or standard deviation) associated with the distribution of 

data, weaponeers use range error probable (REP) and 

deflection error probable (DEP). The REP is the distance 

from the DPI to a pair of lines perpendicular to the range 

axis such that fifty percent of the impact points in range 

lie between them. Similarly, the DEP is a pair of lines 

perpendicular to the deflection axis such that fifty 

percent of the impact points lies between them. Although 

REP and DEP categorize data in range and deflection, a more 

common error probable is the circular error probable (CEP).  

CEP is defined as the radius of a circle from the desired 

impact point such that fifty percent of the impact points 

lie within the circle. Typically, REP, DEP and CEP are 

calculated after all biases are removed. Thus, the 

distributions are shifted so that their means are equal to 

zero [1]. Figures 7, 8, and 9 pictorially display REP, DEP  
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and CEP, respectively. Additionally, for the analysis in 

this thesis, we will evaluate data sets in which all biases 

are removed. Thus, the means of the distributions are 

usually set to zero.  

 
Figure 7.  Definition of REP (from [1]) 

 

 
Figure 8.  Definition of DEP (from [1]) 
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Figure 9.  Definition of CEP (from [1]) 

C. MATHEMATICAL RELATIONSHIPS OF REP, DEP, AND CEP 

Now that we have defined REP, DEP, and CEP, we will 

show how they are related to the standard deviation of the 

sample. First, we must assume the data is normally 

distribution with a mean of zero or that the bias has been  

removed. We must also assume that the data is independent 

in range and deflection. Given these assumptions, REP and 

DEP can be calculated using Equations (13) and (14).  

 0.6745 xREP   (13) 

 
0.6745 yDEP   (14) 

Similarly, for a Rayleigh distribution of radial miss 

distances, we can find the CEP is calculated implementing 

Equation (15).  

 1.1774CEP   (15) 

Finally, if we are only given a value for CEP, we will 

assume that REP and DEP are equal as given by the common 

standard deviation. Thus, REP, DEP and CEP are related as 

shown in Equation (16).  
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 0.573REP DEP CEP    (16) 

See [1] for the full derivation of Equations (13), 

(14), and (15). The goal in finding REP and DEP, or CEP, is 

to feed these values into the calculations for weapons 

effectiveness or probability of kill. These calculations 

are both a function of weapon accuracy, as measured by the 

error probable values, and the lethal area of the weapon. 

Although we leave the lethal area of specific weapons to 

designers, given a lethal area our goal is to measure REP, 

DEP, and CEP with the highest precision possible in order 

to calculate the most accurate probability of kill. 

D. ACCURACY MODELS  

Thus far, we have assumed that the random test data 

can be accurately modeled by a normal or radial 

distribution. If we calculate an error probable based on a 

poorly fitting distribution, we cannot be confident that it 

truly describes the data with any accuracy. To provide an 

example wherein our assumptions can lead us astray, 

consider Figure 10. We have plotted the PDF and CDF for 

test data and assumed it to be normally distributed. 

Clearly, the statistical model does not fit the data with 

any precision and the model fails the Kolmogorov-Smirnov 

(K-S) test for goodness of fit at the sixty percent 

confidence level.  
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Figure 10.  Normal fit to test data 

It has been noted that some test data is better fitted 

to a linear combination of distributions in the linear or 

radial directions [4]. For the purposes of our analysis, 

this linear combination can take two forms. First, a linear 

combination of the normal PDF will be called a double 

normal PDF, and is shown in Equation (17). 
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Here, the p represents a weighting factor for the 

combination of single normal distributions. Additionally, 
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if the data is radially distributed, a linear combination 

Rayleigh distribution is shown in Equation (18). 
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 (18) 

Consider the example previously presented in Figure 10. 

Now, we evaluate the same test data for fit to a double 

normal distribution as in Equation (17). The resulting PDF 

and CDF are shown in Figure 11.  

 
Figure 11.  Double Normal fit to test data 

We see here that the linear combination of two normal 

distributions fits the test data with accuracy and passes 
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the K-S test for confidence of fit with ninety-five percent 

confidence.  

E. KOLMOGOROV-SMIRNOV (K-S) TEST 

The K-S test is used to compare test data to a 

predicted distribution containing a set of parameters (μ1, 

μ2, σ1, σ2, p in the double normal CDF case) and determine 

the quality of fit. Given the statistical parameters used 

to generate an approximate distribution, we can create a 

set of data points derived from this CDF. We can then 

compare the actual test data to the data generated from our 

predicted CDF using MATLAB’s kstest function. The kstest 

function returns a confidence interval in which the data is 

approximated by using hypothesis testing [5]. A limitation 

to the K-S test is that while it is very sensitive around 

the median value of the data, it is significantly less 

sensitive at the tails [2]. Based on this, many 

statisticians prefer to use the Anderson-Darling test of 

good fit; but it is only valid for a few specific 

distributions. Anderson-Darling cannot be applied to linear 

combinations of distributions, which negates its usefulness 

here [2].  

F. LEGACY METHODS 

Up until this point, the statistics and analysis 

provided assumed that the miss distances can be fit to a 

normal or radial distribution or a linear combination of 

these distributions. There is an additional method, called 

the probability of hit and probability of near miss 

(PHIT/PNM) method, that does not rely on this underlying 
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assumption [1]. Often, it is observed that a recorder might 

see the results shown in the Figure 12. 

 
Figure 12.  PHIT/PNM Methodology (from [1]) 

This data is characterized by a large number of direct 

hits, a fair number of significant misses, and the 

remaining data appears to follow a normal distribution. The 

analysts of this data set calculated three values: 

probability of hit (PHIT), probability of near miss (PNM) and 

a CEP. The PHIT is the number of data points in the unshaded 

region of Figure 12 divided by the total number of shots. 

The PNM is the number of data points under the normal 

distribution after the gross errors are removed divided by 

the total number of shots. Gross errors are defined for 

this method as any data point that lies outside of the 4 , 

where the standard deviation used for eliminating errors is 

the common standard deviation given in Equation (11). This 

process is also iterative, as once the common standard 

deviation is calculated and the data points outside of 4σ 

are removed from the radial miss distance vector (and the 

range and deflection vectors corresponding to the same 
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radial data point), a new common standard deviation of the 

remaining data points must be calculated. The remaining 

data set is then compared to this new 4σ threshold to 

ensure no new gross errors exist. Thus, if we represent the 

probability of gross error by PGE, we can numerically 

calculate the PGE as the total number of errors removed 

divided by the total number shots. Finally, a CEP is 

calculated as it only relates to the data for the PNM 

(normally distributed region). Therefore, the total 

probability can be found by Equation (19). 

 1NM HIT GEP P P    (19) 

A more detailed description of this algorithm can be 

found in [1] and its exact implementation using MATLAB is 

included in the Appendix.   
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IV. TOOLBOX DEVELOPMENT 

It is desired among the weaponeering community to have 

a standard set of tools to aid in evaluating delivery 

accuracy of weapon systems. Although the techniques that 

exist are accurate, we have shown in the previous example 

that a linear combination of distributions seemingly fits 

test data with high confidence [1]. Without the use of 

computing software, identifying the combination of 

distributions would be impossible. The tools depicted in 

Figure 13 were created to do just this.  

 
Figure 13.  The Toolbox 
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A. GROSS ERROR EXTRACTION FOR RANGE AND DEFLECTION 

Often in weapons applications it is desirable to 

evaluate data in range and deflection. In fact, if you are 

given data that is radial and you have the offset angle for 

each occurrence, it is appropriate to calculate range and 

deflection miss distances to add to the fidelity to the 

sample. Given a text file (which can easily be generated 

using cut and paste from Excel or any other tabular 

software) in which the range and deflection miss distance 

are in two column vectors, a user can run the MATLAB script 

GE_extractXY to remove the gross errors from the data sets. 

A gross error is defined as any data point outside of  

4 standard deviations from the mean. The GE_extractXY 

program will identify a gross error in range and remove the 

corresponding data point in deflection and vice versa. When 

running GE_extractXY, the user will be prompted to identify 

the text file that contains the data. The program will then 

output three files to the same directory in which it is 

saved. The first file is called GE_extractXY.txt and 

contains the statistical results for the data provided. The 

program calculates mean and standard deviation for each 

vector and also displays the number of gross errors that 

were removed. The second file is titled 

GE_extract_output_range.txt and contains the resulting 

range vector with the gross errors removed. Similarly, the 

third file titled GE_extract_output_deflection.txt contains 

the resulting deflection vector with gross errors removed. 

Finally, a popup will contain a graph of impact points with 

the gross errors removed. Figure 14 illustrates the input 

and output to the GE_extractXY algorithm.  
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Figure 14.  GE_extractXY Input/Output 

B. DOUBLE NORMAL DISTRIBUTION 

The next program in the toolbox is a MATLAB script 

called DN_CDF_data. This program takes in a text file with 

a single column vector and returns the statistics for 

fitting the data to a double normal distribution. When 

running the program, the user will be prompted to identify 

which text file contains the data desired for evaluation. 

The program will then perform two operations. First, a 

popup will show the PDF and CDF of the double normal curve 

fitted to the data with the raw data superimposed. Second, 

a file titled DN_data.txt will be saved in the same 

directory in which the program was run and contains the 

statistical results for the analysis. This program also 

contains a gross error removal algorithm. If you have run 

GE_extractXY.exe on the data set, the gross error 

statistics will all be zero. The other statistics in the 

DN_data.txt file are the mean and standard deviation of 

each normal distribution and the weighting factor relating 

the linear combinations of normal distributions. The 

confidence interval is calculated using the K-S test 

method. Figure 15 illustrates the input and output to the 

DN_CDF_data algorithm.  
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Figure 15.  DN_CDF_data Input/Output 

C. DOUBLE RAYLEIGH DISTRIBUTION 

The next program in the toolbox is a MATLAB script 

called DR_CDF_data. This program takes in a text file with 

a single column vector and returns the statistics for 

fitting the data to a double Rayleigh distribution. 

Clearly, this assumes that your vector is radially 

distributed and you are unable to calculate range and 

deflection miss distance due to a lack of information. When 

running the program, the operator will be prompted to 

identify the text file containing the data for evaluation. 

Once complete, the program will display a visual graph of 

the PDF and CDF of the curve fitted to the data with the 

raw data superimposed. Second, a text file called 

DR_data.txt will be saved in the same directory in which 

the program was run and contains the statistical results 

from the analysis. This program also contains an error 

removal algorithm to remove gross errors, as it is not 

possible to run GE_extractXY in this case. The first 

section in DR_data.txt will contain statistics on the 

number of gross errors removed and the second section will 

contain the mean and standard deviation of each Rayleigh 

distribution and the weighting factor relating those 

distributions. To reiterate a concept from Chapter II, the 

error removal algorithm is based on the common standard 

deviation in range and deflection  c , not on the standard 

deviation of the radial miss distance  r . In this case, we 
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only pass the radial miss distances into the algorithm and 

exploit the relation that σr=0.655σc to remove the errors. 

The confidence interval is calculated using the K-S test 

method. Figure 16 illustrates the input and output to the 

DR_CDF_data algorithm. 

 

Figure 16.  DR_CDF_data Input/Output 

D. SINGLE NORMAL DISTRIBUTION 

This program will evaluate a column vector for fit to 

a single normal distribution. Running the MATLAB script 

titled SN_CDF_data will prompt the user to input a text 

file containing a single column vector. Once complete, the 

program will pop up a visual graph of the PDF and CDF of 

the curve fitted to the data and with the raw data 

superimposed. The program will also save a text file, 

called SN_data.txt, to the same directory in which the 

program was run. This file will contain the statistics for 

the gross errors that were removed from the sample as well 

as the statistics for the remaining distribution. 

Specifically, these statistics are the mean, standard 

deviation and confidence interval calculated by the K-S 

test function in MATALB. Figure 17 illustrates the input 

and output to the SN_CDF_data algorithm. 

 

Figure 17.  SN_CDF_data Input/Output 
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E. SINGLE RAYLEIGH DISTRIBUTION 

Much like the single normal program above, this 

program will evaluate an inputted vector for fit to a 

single Rayleigh distribution. The MATLAB script titled 

SR_CDF_data will prompt the user to input a text file 

containing a single column vector. Once complete, the 

program will pop up a visual representation of the PDF and 

CDF of the curve fitted to the data with the raw data 

superimposed. The program will also save a text file to the 

same directory in which the program was run called 

SR_data.txt. This file will contain the statistics for the 

gross errors that were removed from the sample based on the 

common standard deviation as well as the statistics for the 

remaining single Rayleigh distribution. These statistics 

include the mean, standard deviation and a confidence 

interval based on the K-S test function in MATLAB. Figure 

18 illustrates the input and output to the SR_CDF_data 

algorithm. 

 
Figure 18.  SR_CDF_data Input/Output 

F. MATLAB’S COMPILER DEPLOYMENT TOOL  

As licenses to MATLAB are not inexpensive, we will 

exploit some of the functionality in the MATLAB software to 

provide the tools described above to all users. The 

compiler tool (called deploytool) converts MATLAB scripts 

to C code. It then packages the C code in the form of an 

executable file that can be run on any machine. The tool 
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also uses free software titled MCR_installer that must be 

installed before running the executable file and allows 

some specific functions of MATLAB to operate [5]. The free 

software can be found for all operating systems on the Math 

Works website. As the MATLAB users will find little 

usefulness in the text files that are output from the code 

segments because they can see the data directly in MATLAB, 

the text files that are generated by the code are required 

for the users of the executable files. 

It is important to note that installation of the 

MCR_installer file will require administrator privileges to 

your computer and it will change the registry file.  
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V. TOOLBOX IMPLEMENTATION FOR ACCURACY ASSESSMENT 

This section describes how to use the code segments 

described in the previous chapter to analyze data as it 

applies to calculating delivery accuracy. The code is 

written to always give the analyst a solution so the 

results should be closely scrutinized. 

A. DATA IDENTIFICATION 

The first step is to identify the type of data that 

you are evaluating. If you are given radial miss distances 

with an offset angle, the data should be converted to range 

and deflection miss distances for analysis. If you have 

range and deflection data, continue with it in this form. 

The only other possibility is to have radial miss 

distances. The reason range and deflection miss distance is 

preferred is to enhance the fidelity of the statistics used 

to describe the data. Mainly, radial data assumes that the 

standard deviations in range and deflection are equal, 

which is not always a good assumption. As mentioned 

previously, common to artillery firings, there is a 

relatively small dispersion in deflection and a much larger 

dispersion in range [3].  

B. RANGE AND DEFLECTION DATA  

1. GE_extractXY 

The first tool to run both range and deflection 

vectors through is GE_extractXY. This code will remove the 

gross errors from each vector and the corresponding data 

point in the opposite vector. To illustrate the importance 

of this step, consider a weapon that lands on the range 
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axis but misses the positive deflection axis by more than  

4 standard deviations. If you evaluate the range data 

independently, the event would appear as a direct hit, 

whereas it would be considered a gross error in deflection. 

This data point is clearly a miss and should be removed 

based on our definition of a gross error. GE_extractXY will 

output two text files, one containing the range vector and 

one containing the deflection vector with gross errors 

removed. The resulting vectors are inputted into 

SN_CDF_data separately.  

2. SN_CDF_data 

Given a text file with a single vector, SN_CDF_data 

will return the statistics σ and μ, and the confidence of 

fit to a single normal distribution. If the fit does pass 

the confidence test, the resulting σ can be used to 

calculated REP or DEP, respectively, using Equations (13) 

and (14). Clearly, if the data does not pass the confidence 

test within an acceptable limit (normally ninety-five 

percent), the statistics calculated will hold no value and 

the fit to a double normal distribution should be 

evaluated. This process should be implemented twice; once 

for range and once for the deflection vectors.  

SN_CDF_data does contain a gross error removal 

algorithm. It will only look for errors in the inputted 

single vector. This was included to increase the 

functionality of the code. When analyzing range and 

deflection as a process, GE_extractXY should always be 

utilized first. 
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3. DN_CDF_data 

Given a text file with a single vector, DN_CDF_data 

will return the statistics σ1, σ2, μ1, μ2, p and the 

confidence of fit to a double normal distribution. Clearly, 

if the data does not pass the confidence test within an 

acceptable limit (normally ninety-five percent), the 

statistics calculated will hold no value. If the fit does 

pass the confidence test, the analyst should pay careful 

attention to the results for p, σ1 and σ2. In some cases, 

the weighting factor (p) that is calculated can be less 

than ten percent or even negative. This shows that your 

data is more likely to be from a single normal distribution 

and not a double normal distribution. In addition, for 

small values of p, the standard deviations can often vary 

by 2 orders of magnitude. This is another sign that your 

data is more likely to fit a single normal distribution. 

However, if the weighting factor p holds significant weight 

and the data passes the confidence of fit test, the values 

of σ1 and σ2 can be used to calculate two error probable 

values. Additionally, you can identify a CDF that models 

the data from which the input was generated. This process 

should be implemented twice, once for the range vector and 

once for the deflection vector.  
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C. RADIAL DATA 

1. SR_CDF_data 

If you are not given data in range and deflection, but 

rather radial miss distances, the single vector should be 

inputted into SR_CDF_data. In this case, the gross error 

removal algorithm is implemented in the code and the 

results will be output with the σ and result of confidence 

of fit test in the SR_data text file. If the data passes 

the confidence test, the σ is used to calculate a CEP using 

Equation (15). If the data fails the confidence test, we 

analyze the data set for fit to a double Rayleigh 

distribution.   

2. DR_CDF_data 

Given radial data, DR_CDF_data removes the gross 

errors from the data set and returns σ1, σ2, and p. The code 

also returns the confidence of fit to a double Rayleigh 

distribution in the DR_data text file. If the data passes 

the confidence test, σ1 and σ2 are used to calculate two 

independent CEP values and p is used to weight them 

accordingly. The exact implementation of this method will 

be described in the next chapter.  

As mentioned previously, the analyst should pay close 

attention to the statistical outputs to ensure they are 

logical. The code will always produce a solution, but the 

values returned may not make mathematical sense. 
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A flow chart for the single distribution process can 

be found in Figure (19). 

  
Figure 19.  Single Distribution flow chart 

The same flow chart can be used when evaluating for 

fit to a linear combination of distributions. For the range 

and deflection case, you will run the DN_CDF_data program 

and the output will be DN_data.txt. Similarly, in the 

radial case, you will run DR_CDF_data and the output will 

be DR_data.txt. It is recommended that you rename the text 

file that contains the statistical output as the program 

will re-write to the DR_data.txt file when you run the 

program a second time.    
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D. ALTERNATIVE APPROACH 

In an effort to produce a more accurate solution, a 

less intuitive approach can be used to evaluate the data. 

In this case, fit to a linear combination of distributions 

is evaluated first as it may more precisely describe 

impacts. In practice, this would reverse the process 

described above and you would evaluate DN_CDF_data first 

and then SN_CDF_data. Similarly, if given radial data, you 

would analyze DR_CDF_data and then SR_CDF_data. Computing 

power has resulted in the more frequent use of mixture 

models and although not historically implemented, the 

precision of the solution will be better.  
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VI. CALCULATING WEAPON EFFECTIVENESS  

Although the tools described in the previous chapter 

provide valuable statistics concerning the accuracy of a 

weapon system, this is not the end goal. The error probable 

values are used to not only describe the accuracy, but more 

importantly the accuracy is used to calculate the 

effectiveness of a weapon or the probability of kill. Given 

a large bomb, this solution may seem trivial in that a  

near miss of a few feet from the intended target is 

insignificant. However, highly precise munitions that carry 

very little explosive material are intended to not wipe out 

a city, but rather kill a very specific target. Often, a 

kill in this case not only depends on if we hit the target, 

but where we hit the target. The precision not only affects 

the probability of kill, but also collateral damage 

estimates.  

A. PROBABILITY OF KILL CALCULATIONS 

There are two methods that we will describe as a basic 

way to calculate the probability of kill. The first method 

uses a Monte Carlo simulation and the second exploits the 

mathematical convenience of the expected value theorem to 

calculate the probability of kill. 

B. MONTE CARLO APPROACH 

A Monte Carlo simulation runs an iteration of a 

desired calculation a series of times until the final 

result converges. In this simple case, we will draw a 

random impact point from the CDF generated using the 

toolbox presented. For a fixed target size, we then check 
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to see if the impact point hits or misses the target. If we 

hit the target, we increase a counter; if we miss, we do 

nothing. At the end of the loop we will average the number 

of hits by the total number of random draws. Running this 

for a large number of iterations, we can determine the 

probability of hitting the target or probability of kill.  

C. EXPECTED VALUE THEOREM 

If we have a continuous random variable, x, the 

expected value of x is defined in Equation (20). 

 
( ) ( )E x x f x dx





   (20) 

Further, suppose that we have a function of a random 

variable y = h(x) where x is derived from the PDF f(x). In 

this case, we can define the expected value of y in 

Equation (21). 

 
( ) ( ( )) ( ) ( )E y E h x h x f x dx





    (21) 

To calculate the probability of kill in this case, we 

perform the integration of Equation (21). For a normal 

distribution there is not an explicit solution to the 

integral so we will approximate the value of the CDF using 

the error function estimate. For the Rayleigh distribution 

there is an explicit result. 

Using this method, we calculate the probability of 

kill for range and deflection separately. Because these 

samples are independent, we can exploit the property of 

independent probability calculations as in Equation (12) 

and get the total probability of kill by multiplying the 
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probability of kills from range and deflection together. In 

the radial case, the probability of kill returned is the 

total probability of kill.  

D. PHIT/PNM METHODOLOGY 

To calculate the probability of kill using the PHIT/PNM 

method, we exploit the fact that the data from which the 

hits and misses were calculated is independent. Mainly, the 

data in the sample is not double counted by either 

statistic. Thus, we calculate the probability of kill in 

Equation (22). 

 1 2* *T NM HITPk P Pk P Pk   (22) 

Pk1 is calculated using the CEP that corresponds with 

the normal distribution of PNM. Pk2 is calculated using a 

CEP of zero (a direct hit). Here PHIT and PNM can be seen as 

weighting factors.  

E. THE JMEM WEAPONEERING SYSTEM 

Although we simulate the probability of kills using a 

hit or miss methodology, the Joint Munitions Effectiveness 

Manual Weaponeering System (JWS) contains complex data of 

actual weapons’ blast radii, fragmentation data, etc., as 

well as the dependence on trajectory that the weapon 

attacks the target and is used to provide the most detailed 

probability of kill results. The JWS is limited in its 

input, as it currently requires a single REP, DEP, or CEP 

to generate effectiveness models. Because the double normal 

distribution produces statistics that are not independent, 

we cannot utilize this information as input to the JWS. 
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Some examples why the output from a double normal 

distribution cannot currently be used are described below. 

 1. Given σ1, σ2, μ1, μ2, and p one might try and 

weight the standard deviations to produce single standard 

deviation (σNEW). This is represented in Equation (23). 

  NEW 1 2p*   1 *p      (23) 

Properties of normal distributions dictate that this result 

is a new single normal distribution and this distribution 

will not represent the data from which the original 

statistics were derived.  

 2. Given the σ1, σ2, μ1, μ2, and p for both range 

and deflection, one might try and input σ1 corresponding to 

range into JWS with the σ1 corresponding to deflection in 

the form of REP and DEP, respectively. Then, in a separate 

calculation, provide the JWS σ2 from range data and σ2 from 

deflection data in the form of a separate REP and DEP. 

Finally, you could use the weighting factor to weight the 

effectiveness much like the PHIT/PNM methodology. The miss 

distances in range are independent and the deflection miss 

distance is also independent when evaluated separately. 

However, when combining the range and deflections miss 

distance for JWS calculations, independence cannot be 

assured. For example, there is no way to verify that the 

same data points used to calculate σ1 in range are the same 

finite set used to calculate σ1 or σ2 in deflection.  

What this dictates is that for delivery accuracy 

calculations, double normal distributions can be utilized 

and applied to range and deflection miss distances for 

accuracy analysis. When providing data to JWS however, the 
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data must be converted to radial miss distances and 

evaluated for fit to a double Rayleigh distribution. The 

double Rayleigh distribution will produce σ1, σ2, μ1, μ2, and 

p. By converting the data to radial miss distance, we 

remove the need to have independence between range and 

deflection axis and can provide JWS with two independent 

CEP values. We can then weight the resulting probability of 

kill (Pk) produced by JWS as in Equation (24). 

 1 2* *(1 )TPk Pk p Pk p    (24) 

This method is very similar to that of the PHIT/PNM 

methodology except that the Pk2 is calculated with an actual 

CEP value vice the CEP equaling zero in the PHIT/PNM method. 

JWS is being modified to accept the statistical output 

in the form of a double normal distribution. This change 

will be available to the user soon. The necessity for this 

change will be illustrated in the next chapter.  
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VII. IMPLEMENTATION FOR EFFECTIVENESS  

The following process should be used to calculate 

error probable values to be used as input for effectiveness 

calculations. We will implement the recommended methodology 

that uses the linear combination of distributions to 

evaluate weapon accuracy as a primary method. Mainly, the 

double distributions will be examined first, followed by 

the single distributions for more complete analysis. This 

is done to illustrate the flexibility inherent to the 

toolbox and is made possible by the toolbox code.   

A. RANGE AND DEFLECTION DATA 

Given range and deflection miss distance, the analyst 

should start by removing gross errors using GE_extractXY 

from the range and deflection vectors. The resulting output 

with gross errors in range and deflection removed should be 

inputted into DN_CDF_data separately to see if they pass a 

confidence on fit to a double normal distribution. If both 

range and deflection data pass the fit test, the statistics 

will be able to be input into JWS in the future. As this is 

not yet supported, the resulting range and deflection 

vectors are input into SN_CDF_data first to see if they 

pass the confidence of fit to a single normal distribution. 

If both data sets pass, calculate both REP and DEP values, 

respectively, for input into JWS. If either distribution 

fails to fit a single normal distribution, the analyst 

should convert the data to radial miss distances. 
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B. RADIAL DATA 

Whether the data failed the single normal (or double 

normal) distribution confidence of fit test or the analyst 

was only provided radial data, begin by imputing the vector 

into the DR_CDF_data algorithm. If the data passes the 

confidence of fit test for the double Rayleigh 

distribution, σ1 and σ2 are used to calculate CEP1 and CEP2. 

These values can be inputted into the JWS program 

separately. Thus, CEP1 and CEP2 will each have a probability 

of kill associated with them (Pk1 and Pk2). To find the 

total probability of kill, use the weighting factor to 

combine the probability of kills as described in Equation 

(24). 

In the event that the data fails to pass the 

confidence of fit to a double Rayleigh distribution, the 

radial data should be input into the SR_CDF_data to 

determine if it fits a single Rayleigh distribution. If it 

passes the confidence of fit test, a single standard 

deviation output by the algorithm and is used to calculate 

a CEP value. This value is passed into JWS to determine a 

probability of kill. A flow chart of the entire process is 

shown in Figure 20. This will require modification once JWS 

supports a double normal distribution. 
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Figure 20.  Effectiveness flowchart  
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VIII. COMPARISON OF DATA ANALYSIS METHODS AND 
THEIR EFFECT ON PK 

To illustrate the need for the toolbox and  

its functionality, we investigate various accuracy 

methodologies applied to a single data set. By comparing 

the probability of kill values for each method, it will  

be clear why the toolbox was created. Mainly, the use  

of linear combinations of distributions significantly 

increases the precision in modeling the accuracy of test 

data, which directly impacts the probability of kill 

calculation.  

A. PROBABILITY OF KILL 

A Monte Carlo method may be used to calculate the 

probability of kill. To implement this we create a fixed 

target size. In this example, we used a square target that 

is centered about the origin. Then to calculate the 

probability of kill given a CEP value, we draw a random 

number from a single Rayleigh distribution characterized by 

the standard deviation associated with the CEP. Assuming 

that the origin is our aim point (the center of the 

target), the random number drawn is the radial miss 

distance for a single shot. We check to see if the radial 

miss distance is within the predetermined target size, and 

if so, we call it a hit. If the radial miss distance is 

outside the target size, the occurrence is a miss. Then, we 

average the number of hits by the total number of shots and 

this determines the probability of kill.  

Similarly, if we are given REP and DEP, we draw a 

random number from a single normal distribution 
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characterized by REP and a second random number from a 

single normal distribution characterized by DEP. We then 

check to see if the miss distance in range and deflection 

falls within the target size. If the actual impact point is 

within the target dimensions, we count it as a hit and if 

the impact is outside the target size, it is a miss. Again, 

averaging the number of hits over the total number of shots 

results in the probability of kill.  

To utilize a Monte Carlo method for a double normal 

distribution requires only a slight modification to the 

single normal method described above. In this case, the 

range misses are characterized by 2 independent single 

normal distributions given by REP1 and REP2, and as such we 

randomly sample from each distribution according to the 

weight factor p. This is accomplished by creating a range 

vector constructed of 10,000 miss distances. The weighting 

factor p is used to populate this vector according to REP1 

and DEP1. Thus, 10000* p elements are from a distribution 

generated from REP1 and 10000*(1 )p  elements are from the 

distribution corresponding to REP2. This creates a sample 

size of 10,000 miss distances generated randomly from the 

same distributions described by the double normal result. 

In deflection, there is a second set of 2 unique single 

normal distributions given by DEP1 and DEP2 that describe 

the deflection miss distances. We randomly sample the 

deflection miss distance according to p for this linear 

combination as well. This is done using the same method for 

the described for the range vector. Finally, given the 2 

vectors of 10,000 elements each, we check to see if the 

randomly generated miss distance is within the target size 
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and count the number of hits. The probability of kill is 

the total number of hits divided by the number of shots.  

The methods described above are then repeatedly 

applied as we increase the size of the target. The results 

in a range of probability of kill values over various 

target sizes, defined to be the length and width of the 

target.  

B. MEDIAN RADIAL ANALYSIS 

Given a tabular data set of 364 miss distances shown 

graphically in Figure 21, we want to calculate a CEP value. 

This represents the simplest and faster way to generate an 

accuracy statistic. 

 
Figure 21.  Test data impact points 
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The process to calculate a CEP is listed below.  

 

1. Take the range and deflection miss distances and 
calculate radial miss distances in Excel.  

2. Rank order the misses and calculate the median 
value.  

3. This value directly returns the CEP.  

4. In this case, CEP = 2.465.  

 

We then implement the Monte Carlo method to calculate the 

probability of kill over various square target sizes 

resulting in Figure 22.  

 
Figure 22.  Pk based on CEP 
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C. ANALYSIS IN RANGE AND DEFLECTION 

In an effort to improve the analysis process using the 

same data set, we now keep the data in range and deflection 

separate. We remove 19 gross errors that lie outside 4  

from the data set. This is described in Chapter III, 

Section A. We then assume that the remaining data is from a 

single normal distribution and calculate the standard 

deviation in range ( R 4.11) and the standard deviation in 

deflection ( D 2.59). These correspond to a value of REP = 

2.77 and DEP = 1.75, respectively. A Monte Carlo method was 

implemented by sampling REP and DEP and the probability of 

kill was calculated again for different target sizes. 

Figure 23 plots the CEP method compared with the REP and 

DEP method. As expected, maintaining the data in REP and 

DEP increases the precision of the model. In this case, the 

standard deviation in range is almost double the standard 

deviation in deflection. Thus, assuming the standard 

deviations are equal as in the radial case is just not as 

accurate. The disparity in Pk values is troublesome as they 

differ by almost 40 percent in some cases. This is what 

motivates the toolboxes design. 
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Figure 23.  Comparison: CEP vs. REP/DEP  
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Table 1.   DN_CDF_data results 

 
Figure 24.  DN_CDF_data graph for range  
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Figure 25.  DN_CDF_data graph for deflection  
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the double normal method to the other methods presented, 

the probability of kill is plotted in Figure 26 for the 

double normal method, single normal method, and the radial 

method.  

 
Figure 26.  Comparison: DN method/SN method/Radial method  
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for the most accurate modeling of the data set. This 

directly affects the precision of the probability of kill 

calculations. This impact can be realized when considering 

that mission planners will base a mission on a specific 

probability of kill for a target. They may launch multiple 

weapons at a target to achieve a 90 percent Pk value.  

The differences in the methods describe can result in  

too many or too few weapons being launched. This could 

directly result in a mission failure or in extra, unneeded 

weapons being launched costing taxpayer money and reduced 

inventories for future missions. In the case of air 

launched weapons, this directly puts more pilots in harm’s 

way.   
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IX. FURTHER EXAMPLE TOOLBOX APPLICATIONS 

In this section, we present more examples to 

illustrate the need for not only a standardize method of 

calculating weapon accuracy, but we will also further 

illustrate the need for implementing linear combination 

techniques presented in the previous chapters.  

A. CASE STUDY 1 

1. Calculating Delivery Accuracy  

Using the techniques previously presented, consider 

the miss distance data given in Table 2. The data was 

originally presented as range and deflection miss distances 

and the radial miss distances were calculated for later use 

in Excel. First we will run the GE_extractXY program to 

remove gross errors in range and deflection. Remember, that 

if the code identifies an error in range, it will remove 

the corresponding data point in deflection and vice versa. 

Out of the 76 data points, 2 gross errors are removed. 

Figure 27 shows the plot of the remaining data set with 

gross errors removed. 
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Table 2.   Weapon A data 

Range 

miss 

distance

Deflection 

miss 

distance

radial 

miss 

distance

Range 

miss 

distance

Deflection 

miss 

distance

radial 

miss 

distance

‐10.0306 1.6526948 10.17     ‐6.48854 1.746882 6.72

‐15.6853 ‐0.4882768 15.69     ‐3.4803 ‐6.611925 7.47

‐9.65046 ‐10.123535 13.99     4.053778 ‐5.125377 6.53

‐12.0806 2.6809026 12.37     29.44539 ‐8.866431 30.75

49.56104 ‐8.0855295 50.22     14.28569 0.1115436 14.29

4.114559 8.8852719 9.79     12.03432 ‐15.81656 19.87

‐1.86632 3.8594538 4.29     3.378498 ‐4.015787 5.25

4.895866 9.2970042 10.51     5.099985 0.98552 5.19

9.47692 ‐12.644661 15.8     ‐1.75845 ‐0.73549 1.91

3.305097 ‐8.5139389 9.13     4.382794 ‐2.547982 5.07

17.71039 ‐8.4384881 19.62     1.730302 3.9348632 4.3

10.26875 3.8510995 10.97     9.059405 ‐6.029285 10.88

1.056869 11.412715 11.46     ‐1.75738 ‐0.738047 1.91

5.201057 8.5517761 10.01     62.85378 ‐16.49392 64.98

2.398486 4.5658221 5.16     37.26428 ‐3.470591 37.43

‐17.373 ‐2.3216259 17.53     33.67541 ‐0.724638 33.68

12.62246 15.577345 20.05     3.840316 2.1258474 4.39

‐7.12678 ‐4.7807452 8.58     12.97877 11.143522 17.11

‐7.08519 5.2066772 8.79     11.79049 8.7898803 14.71

‐7.19539 ‐19.717046 20.99     28.6502 9.6613791 30.24

‐2.26301 ‐5.9249476 6.34     20.51767 15.242599 25.56

‐2.83356 ‐9.6677223 10.07     ‐12.0626 ‐15.9177 19.97

13.65589 ‐9.2653143 16.5     ‐13.004 2.6486669 13.27

‐9.2706 6.7848205 11.49     9.000507 9.1755477 12.85

0.478825 ‐1.8145258 1.88     ‐27.5337 ‐24.96625 37.17

7.579317 ‐9.5516601 12.19     ‐2.55039 ‐20.86326 21.02

63.25171 ‐30.180401 70.08     ‐24.6884 ‐27.18075 36.72

‐5.07739 3.3123543 6.06     ‐30.1314 ‐5.296147 30.59

1.036115 ‐2.4797135 2.69     ‐10.3493 4.5357514 11.3

20.63737 ‐15.364597 25.73     ‐23.1435 ‐12.2365 26.18

3.439338 ‐5.5705593 6.55     51.59975 ‐42.89222 67.1

6.280177 2.3233214 6.7     101.9149 ‐69.09114 123.13

0.080233 ‐3.6765674 3.68     116.3996 ‐67.61015 134.61

‐4.46198 4.7067751 6.49     74.2588 ‐29.5293 79.91

6.516216 3.9661641 7.63     15.2239 ‐0.482488 15.23

‐11.4414 0.1875602 11.44     19.07191 ‐7.567178 20.52

‐5.06205 ‐7.9414955 9.42     15.02195 ‐2.709418 15.26

‐6.97965 2.7558156 7.5     3.118798 ‐5.222366 6.08

Weapon A
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Figure 27.  Range and deflection plot for Weapon A 

The remaining 74 data points in range are returned in 

GE_extract_output_file_range text file and similarly the 

seventy-four data point in deflection are outputted to 

GE_extract_output_file_deflection text file. We now run  

the output files through DN_CDF_data individually. The 
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As seen from in Table 3, the range miss distance is 

modeled extremely well by a double normal distribution, but 

the deflection miss distance is not. Figures 28 and 29 show 

the plot of the PDF and CDF as well as the test data 

superimposed.  

 
Figure 28.  Weapon A - DN_CDF_data graph for range 
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Figure 29.  Weapon A - DN_CDF_data plot for deflection 

Although the deflection data passes the 95 percent 

confidence of fit test, the weighting factor is not strong 

and the mean and standard deviations are magnitudes apart 

when comparing the first normal distribution in deflection 

to the second distribution of the linear combination. This 

is an example of the toolbox giving the analyst a solution, 

but one that is not valid. The analyst must scrutinize the 

results to ensure they are reasonable. Thus, we input the 

range and deflection miss distances to the SN_CDF_data 

program. The range data passes the fit to a single normal 

distribution with μ = 5.868 and σ = 19.804. Similarly, the 

deflection data passes the confidence of fit with  

μ = -3.688 and σ = 10.915 to a single normal distribution. 

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.5

1

x

F
(X

)

Cumulative density function F(X)

-50 -40 -30 -20 -10 0 10 20
0

0.05

0.1

0.15

0.2

x

f(
x)

Probability density function f(x)



 62

The plots of the PDF and CDF are shown in Figures 30 and 

31, respectively.  

 
Figure 30.  Weapon A - SN_CDF_data for range 
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Figure 31.  Weapon A – SN_CDF_data for deflection 
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Figures 32 and 33 show the plot of the test data, PDF, and 

CDF for range and deflection, respectively. 

 
Table 4.   Weapon B data 

 

 
Table 5.   Weapon B – DN_CDF_data results 

 
 

Range 

miss 

distance

Deflection 

miss 

distance

radial 

miss 

distance

Range 

miss 

distance

Deflection 

miss 

distance

radial 

miss 

distance

0.3 ‐0.9 1     4.3 7.3 8.5

‐8.8 ‐3.2 9.3     52.1 59.4 79

‐5.7 ‐1.4 5.9     100.5 84.1 131.1

1.7 ‐1.6 2.4     72.4 82.4 109.7

0.1 1.8 1.8     ‐0.8 ‐3.3 3.4

‐3.6 2.6 4.5     67.8 91.9 114.3

‐1.6 ‐4.2 4.5     6.8 4.4 8.1

7.8 4.7 9.1     ‐4.6 5.7 7.3

‐2.2 2.2 3.2     7.7 ‐13 15.1

‐8.1 ‐0.1 8.1     84.3 33.6 90.7

‐0.3 ‐1 1     72.9 37.5 82

2 ‐0.9 2.2     ‐19 ‐17.1 25.6

‐1.6 6.1 6.3     ‐4.7 ‐18 18.6

‐2.7 5.2 5.9     ‐10.4 ‐11.6 15.6

‐2.3 4.3 4.9     ‐4.9 ‐14.8 15.6

Weapon B

p 0.66 p 0.661

μ1 ‐2.044 σ1 3.683 μ1 0.588 σ1 4.68

μ2 36.416 σ2 53.299 μ2 18.692 σ2 59.531

DN_CDF_data

Range Deflection
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Figure 32.  Weapon B - DN_CDF_data for range  
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Figure 33.  Weapon B - DN_CDF_data for deflection  

From the analysis above, both distributions pass the 

confidence of fit and both are modeled well by double 

normal distributions. For range, we see a majority of the 

impacts are very close to the target but the remaining miss 

distance have a very large dispersion. For deflection 

impacts, we see the same statistical characteristics as in 

range. Clearly, a majority of misses are very close to the 

target, but those inaccurate impacts outside of this small 

boundary miss with a very large dispersion. Therefore, the 

data supplied to JWS for the probability of kill 

calculation is listed in Table 5. 
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2. Current Methodology 

As JWS cannot currently accept double normal 

statistics, we will continue to evaluate the data set for a 

single normal distribution next. As a reminder there were 

no gross errors in the data set. In this case, both range 

and deflection miss distances fail the confidence of fit to 

a single normal distribution. Thus, we convert the data in 

Table 4 to radial miss distances and run the single vector 

through the DR_CDF_data program. The results are show in 

Table 6 and the plot of the radial data, PDF, and CDF are 

shown in Figure 34.  

 
Table 6.   Weapon B – DR_CDF_data results 

p 0.567

σ1 3.86

σ2 18.525

Radial

DR_CDF_data
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Figure 34.  Weapon B – DR_CDF_data for radial misses 

In this case, the data passes the confidence of fit to 

a double Rayleigh distribution. We can calculate two values 

of CEP and input them into JWS. In this case, CEP1=4.544 and 

CEP2= 21.811. JWS will output a probability of kill values 

for each CEP separately and we find the total probability 

of kill by combining the Pk values according to the 

weighting factor p as in Equation (24), repeated here for 

convenience.  
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C. CASE STUDY 3  

1. Delivery Accuracy 

The data considered in this study is tabulated in 

Table 7. Running the data through GE_extractXY results in 

the removal of no gross errors (PGE = 0). Next, we input the 

range and deflection vectors into the DN_CDF_data program 

separately and the results are displayed in Table 8.  

 
Table 7.   Weapon C data 

 
 

Range 

miss 

distance

Deflection 

miss 

distance

Radial 

miss 

distance
0.12 -2.66 2.662705
0.41 -0.23 0.470106
0.17 -0.59 0.614003
-1.07 -1.81 2.102617
-0.27 -0.24 0.361248
-1.52 -2.09 2.584279
-5.2 -14.54 15.44188

-0.54 -1.64 1.726615
1.82 -1.98 2.689387
0.99 -1.29 1.6261
1.28 -0.91 1.570509
1.82 -0.79 1.984061
-1.2 -2.96 3.193994

-1.02 -1.45 1.772823
-0.12 -0.32 0.34176
-0.12 -0.4 0.417612
3.46 -1.23 3.672125

Weapon C
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Table 8.   Weapon C – DN_CDF_data results 

For miss distances in range, the weighting factor is 

close to unity and the difference in dispersion is two 

magnitudes different. For the deflection data, the 

weighting factor is negative, which is a clear sign that a 

fit to a double normal distribution is not valid and the 

analyst has to interpret the results with care and 

judgment. The K-S test in each of these cases passes at a 

95 percent confidence level and again the code is designed 

to always produce a solution. Clearly, the solution in this 

case is not valid. As neither data set fits to a double 

normal distribution, we run the range and deflection miss 

distances through SN_CDF_data separately. The results are 

summarized in Table 9.  

 

 
Table 9.   Weapon C – SN_CDF_data results 

Both the range and deflection miss distance pass the 

confidence of fit test for a single normal distribution and 

the values returned are sensible. Thus, we can model the 

accuracy of data in both range and deflection with the 

descriptive statistics in Table 9. The values supplied to 

JWS would be REP= 1.25 and DEP=0.58.  

p 0.925 p ‐1.116

μ1 ‐0.127 σ1 1.173 μ1 0.008 σ1 0.044

μ2 ‐0.442 σ2 307.536 μ2 0.001 σ2 1.179

DN_CDF_data

Range Deflection

μ ‐0.058 σ 1.85 μ ‐1.287 σ 0.858

1.247899 0.578721

Range Deflection

DEPREP

SN_CDF_data
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X. THE TOOLBOX AND GPS GUIDED WEAPONS 

In an effort to further analyze a specific subset of 

data, this chapter will focus on weapons that are guided by 

the Global Positioning System (GPS). Utilizing the toolbox, 

test data from GPS guided weapons fit double normal 

distributions in range and deflection with high confidence. 

In contrast, the JWS calculation uses a drastically 

different predictive method to determine the accuracy of 

the GPS guided munitions that results in a single 

distribution. This chapter will investigate and determine a 

resolution to this apparent paradox.  

A. THE TOOLBOX AND GPS GUIDED DATA 

Consider a sample of miss distances from a GPS guided 

weapon. The sample consists of 289 test data points. We 

implement the toolbox methodology and remove 14 gross 

errors and find that the result fits a double normal 

distribution on range and deflection at 95 percent 

confidence. The resulting statics are shown in Table 10 and 

the plot of the impact points is shown in Figure 35.  

 
Table 10.   DN_CDF_data results 

 

p 0.457 p 0.728

μ1 1.163 σ1 12.028 μ1 ‐0.166 σ1 5.415

μ2 ‐1.444 σ2 3.246 μ2 ‐0.126 σ2 14.835

DN_CDF_data

Range Deflection
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Figure 35.  Test data impact points 

Knowing this result, using the toolbox methodology we 

would provide JWS the statistics from Table 10 and allow it 

to calculate a probability of kill. However, this is not 

the methodology implemented by JWS.  

B. GPS BACKGROUND 

It should not be surprising that the GPS system cannot 

guide a weapon to an exact point on the ground. There are 

errors associated with system and they must be accounted 

for. The equation to calculate the total error for a GPS 

guided weapon is shown in Equation (25) [1]. 

 ErrorTOTAL
2  NAV 2

 G &C 2
 TLE 2

 (25) 
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The first error is the navigation error or NAV. This 

error is inherent to the GPS system. The sources of these 

errors are rooted in different system attributes and 

include: satellite clock error, ephemeris, troposphere, 

ionosphere, noise, and multipath. More specific definitions 

of these errors can be found in [6]. It is important to 

point out that these errors are presented as standard 

deviations and typical values of the errors are shown in 

Table 11 [1].  

 
Table 11.   Standard GPS ranging errors 

Further, these errors can be separated into two 

subgroups: random and bias. Satellite clock, ephemeris, 

troposphere, and ionosphere are classified as bias errors. 

Noise and multipath are considered random errors. Each 

facet that introduces error is given a certain accuracy 

value based on a unit length, which is a function of the 

quality of the GPS signal. The total error is found by root 

sum squaring (RSS) each individual error.  

The guidance and control error (G&C) is next and is a 

function of the weapons position control system. The 

ability of the weapon to track the exact GPS location and 

use its control surfaces to maintain the error as close to 

Error Source GPS Ranging Error (m) Error Type

Satellite clock 0.4 Bias

Orbit ‐ ephemeris 0.4 Bias

Troposphere 0.5 Bias

Ionosphere 0.5 Bias

Reciever noise 0.4 Random

Multi‐path 0.5 Random

Total RMS error 1.11



 74

zero is the basis of this error. The error is nested in the 

weapon design and can be represented by a single constant 

standard deviation for a given weapon variant.  

The last error is called the target location error 

(TLE). This error comes from the source of the GPS 

coordinates of the target and is also represented by a 

standard deviation. If using a map to identify a target 

location, this error could be significant. Using a spotter 

on the ground would reduce this error. If the test data 

comes from an instrumented range, this error is assumed to 

be zero.  

The only error that varies when conducting tests on an 

instrumented range is the NAV error. The guidance and 

control error is constant and known based on the weapon 

that we are testing. The TLE error is assumed zero as we 

know the exact location of the target. These errors are the 

first step in generating the GPS Weapons Delivery Accuracy 

Program (DWDAP) shown in Figure 36. 
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Figure 36.  GPS Weapon Accuracy Calculator 

C. NAV ERROR 

The GPS ranging errors are combined by root sum 

squaring (RSS) each individual error from Table 11 to 

arrive at the user equivalent range error (UERE). The UERE 

is then modified by 3 parameters: the horizontal dilution 

of precision (HDOP), the vertical dilution of precision 

(VDOP) and impact angle. The dilution of precision is a 

function of the GPS satellite locations relative to the 

 Bias Random
Satellite clock 0.780
Ephemeris 0.780 HDOP 1.1
Troposphere 0.500 VDOP 1.7
Ionosphere 1.000 GDOP 2.02
Noise  0.400 Impact θ 60
Multipath 0.500

Receiver 1.288  
Space and clock (S&C) 1.103

RSS 1.571 0.640
UERE (pseudo range sigma)

 
Bias Random Total H Bias Random Total V

Nav error H (sigma) 1.222 0.498 1.319 2.670 1.089 2.883
G&C H (sigma) 0.590 0.590 0.590 0.590
TLE H (sigma) 2.840 2.840 3.710 3.710
RSS (sigma) 3.092 0.772 3.187 4.571 1.238 4.736

Summary-horizontal plane Bias Random Total R Bias Random Total D
REP/DEP H plane 4.065 1.052 4.199 3.092 0.772 3.187
Single weapon CEP H plane

Summary-vertical plane Bias Random Total V Bias Random Total D
HEP/DEP V plane 7.040 1.238 7.148 3.092 0.772 3.187
Single weapon CEP V plane

1.696

VerticalHorizontal

GPS Weapon Accuracy Calculator - (inputs are green cells) Distances in meters

5.984

Range Deflection

4.326

Vertical Deflection
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receiver [6]. The larger the bearing spread in the 

satellites that you are receiving, the lower the dilution 

of precision. Similarly, if the satellites do not have a 

lot of bearing spread, the value of the dilution of 

precision is higher. The impact angle is a function of the 

height and distance from which a payload is dropped. This 

may be controlled by the mission planner and can be entered 

for each launch separately.  

The dilution of precision errors, HDOP and VDOP, are 

used to correct the navigation error in the horizontal and 

vertical planes, respectively. The range and deflection 

errors are then calculated using the using the horizontal 

and vertical errors and corrected by the impact angle. This 

produces a single REP and DEP, which can be used separately 

or combined into a CEP value in the horizontal plane. The 

same procedure can be used in the vertical plane if this is 

the frame that analysis is being performed. Thus, given a 

weapon variant on an instrumented range, the only input 

that changes in the calculator is HDOP, VDOP and the impact 

angle.   

The process of combining these errors and producing 

REP and DEP or CEP is implemented in the GPS Weapons 

Accuracy Calculator shown in Figure 36 [1] where the green 

cells are inputs.   

D. RESOLUTION 

The calculator in Figure 36 is the methodology used by 

JWS when calculating the accuracy of GPS guided weapons. It 

is imperative that we point out a fundamental feature in 

the derivation of the GPS Weapons Accuracy Calculator. When 

combining distributions that are represented by standard 
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deviations or individual Gaussian errors, the resulting 

distribution is a different single normal distribution. 

Thus, each shot can be characterized by a single normal 

distribution and the GPS Weapons Accuracy Calculator 

evaluates the weapon accuracy on a shot to shot basis.  

In contrast, the toolbox that was presented in earlier 

chapters does not consider each shot on an individual 

basis. The toolbox considered all shots as a sample and 

fits a double normal distribution to 275 occurrences. We 

now investigate whether these two approaches can be 

reconciled.  

E. GPS GUIDED WEAPON CASE STUDY  

As shown earlier in this chapter, we fit a double 

normal distribution in range and deflection to a sample of 

275 test impacts for a GPS guided weapon after 14 gross 

errors were removed. The statistics are shown in Table 10. 

However, our argument above using the GPS calculator is 

that each occurrence should be described by a single normal 

distribution in range and deflection, respectively. Thus, 

we must resolve the dilemma of whether the test data should 

be represented as 275 single normal distributions in range 

and deflection or if the data is one double normal 

distribution with 275 data points for range and deflection.  

1. HDOP and VDOP 

Many parameters like impact angle are recorded during 

a testing events but the value of HDOP and VDOP at the time 

of the test was not provided with the data. As the GPS 

Accuracy Calculator requires this as an input, the Federal 

Aviation Administration (FAA) provided a sample of HDOP and 
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VDOP for approximately the same geographic location as the 

testing range. The data for HDOP and VDOP are plotted over 

the course of 30 days as shown in Figure 36 and Figure 37. 

From the plots, ignoring the large singular peaks that only 

last thirty minutes for the entire month, the upper and 

lower bounds on HDOP are 1.3 and 0.6, respectively. 

Considering VDOP, ignoring the singular peaks, the upper 

and lower bounds are 2.1 and 0.9, respectively. 

 
Figure 37.  HDOP plotted for 30 days 

 
Figure 38.  VDOP plotted for 30 days 

2. HDOP/VDOP and the Test Data   

Given the HDOP and VDOP bounds, we generate a data set 

using the lower HDOP bound and lower VDOP bound with the 

same impact angles that were recorded during the testing. 
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This data set was generated using the MATLAB script 

GPS_accuarcy_calc found in Appendix B. Similarly, we 

generate a second data set using the upper HDOP bound and 

upper VDOP bound, again using the same set of impact angles 

as those recorded during the test. The plot of the actual 

test data and the two data sets generated from our 

HDOP/VDOP bounds is shown in Figure 38.  

 
Figure 39.  Data vs. HDOP/VDOP (same impact angle)   

As seen in the plot, we are able to place bounds on 

the data set up to the 72th percentile.  
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3. Data Refinement 

In an effort to improve our modeling, it is necessary 

to look at the data set with more scrutiny. First, gross 

errors must be removed from the data set. This is 

accomplished using the GE_extractXY program from the 

toolbox. This is reason that the actual test data has such 

a large tail in Figure 38. Next, in our generating data 

set, we assumed the TLE was zero as the data was recorded 

on an instrumented range. Upon further inspection, some of 

the tests used pilot designated targets or air-to-ground 

radar to enter target coordinates into the weapon. It is 

also required that we remove these data points as it is 

contrary to our assumptions of zero TLE. Removing these 

data points results in a remaining sample of 242 

occurrences. 

4. Modeling Impact Angle 

In Figure 38, we used the same set of impact angles 

that were recorded in the data set so that we were only 

changing one variable at a time. Since we know that we can 

bound that data, it is desirable to more generally model 

the set of impact angles for comparison. A plot of the 

distribution of impact angles can be found in Figure 39. 
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Figure 40.  Histogram of Impact Angles 

We see that the impact angles are random and it is 

imperative that we model these as accurately as possible. 

For this data set, we have chosen to model the impact 

angles as a single normal distribution with a mean of 78 

degrees and a standard deviation of 3 degrees. In effect, 

this limits the range of impact angle inputs to the GPS 

calculator from 66 to 90 degrees. This also reduces the 

models dependence on VDOP, as the angular correction at 

such a steep impact angle is very small. This 

generalization of impact angles is also consistent with 

tactics usually employed for such weapons [3]. 

5. Updated Model 

Removing the gross errors and the events that have a 

TLE not equal to zero, as well as generalizing the impact 

angles, results in the updated model in Figure 40. 
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Figure 41.  Data vs. HDOP/VDOP (generalized impact angle) 

In this case, we compared the test data to a sample of 

ten thousand random draws varying the impact angle as 

described earlier. Additionally, the upper and lower bound 

of HDOP from the FAA are used again but the data is no 

longer dependent on VDOP as our impact angles are steep. 

Thus, VDOP was set at an average value of 2.1. From Figure 

40, we see that the updated model bounds 93% of the data. 

It is also likely that the 7% of data that is outside the 

bound is from shallow impact angles and has a strong 

dependence on VDOP. This dependence was removed from the 

generalization, as mission planners do not plan for shallow 

impact angles. This bound has extreme importance, as we 

should not model GPS guided munitions using aggregate data 
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sets of large sample sizes (242 different single normal 

distributions). Rather, each weapons firing can be 

described by a unique single normal distribution and given 

the HDOP, VDOP and the impact angle, we can describe the 

exact single normal distribution for that event. The REP 

and DEP from this distribution are used to calculate a 

probability of kill for each individual shot.  

To emphasize, mission planners can immediately 

calculate REP, DEP and CEP values given values of HDOP, 

VDOP and impact angle for the mission plan using the 

spreadsheet in Figure 36. Depending on the value of the 

target and the importance for a direct hit, the values of 

HDOP or VDOP could be used from historical archives, real-

time readings or predictive estimates.  
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XI. CONCLUSIONS AND RECOMMENDATIONS 

The toolbox presented creates a dynamic and functional 

solution to the standardization of weapons accuracy. The 

following conclusions were drawn while developing the 

toolbox. 

1. The toolbox developed characterizes the accuracy of 

several weapons systems. For all the test data files that 

were analyzed, the toolbox resolved each data set to fit 

either a single normal distribution, double normal 

distribution, single Rayleigh distribution, or a double 

Rayleigh distribution with 95 percent confidence. 

2. The toolbox fitted a double normal distribution to 

several sets of data for GPS guided weapons, however JWS 

would consider the same coordinate seeking weapon to have a 

single normal distribution as predicted by the GWDAP 

(Figure 36) calculator. The correct interpretation of N 

independent test data points should therefore be a 

collection of N single normal distributions, where N 

represents the number of independent test firings. Test 

data from coordinate seeking weapons should continue to be 

modeled as a single normal distribution based on each 

independent weapon firing as is currently done by GWDAP. 

3. With respect to other guided weapons systems (e.g., 

laser guided bombs); the physical basis of weapon accuracy 

should be investigated for the same premise as in number 2 

above. Essentially, one could perhaps develop a physics 

based mathematical model that represents laser guided bomb 

error as a single normal distribution, whereas currently 
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the accuracy of such weapons is calculated as a 

distribution from a set of N independent test data points.   
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APPENDIX 

A. MATLAB CODE – DN_CDF_DATA 

% This program reads linear miss distance data (range or deflection)   
% and then fits a double normal distribution in order to determine the  
% distribution stats. The resulting PDF, CDF and data are plotted  
  
clc, clf, clear all 
  
[FileEx,PathEx] = uigetfile(‘*.txt’,’Select the Data File to 
evaluate’); 
ExPath = [PathEx FileEx]; 
  
handles.ExPath = ExPath; 
  
diary DN_data.txt; 
%--------------- Read in all the linear miss distance data ----------- 
%s=input(‘Type in the name of the file to be analyzed (incl. path and 
%extension): \n\n’, ‘s’); 
%s=‘Data sets/JDAM_LAT_range.txt’; 
%s=‘Data sets/test4.txt’; 
s=ExPath; 
fid=fopen(s);                         % open the data file 
x=fscanf(fid,’%f’,[1,inf]);               % read entire data file 
ST=fclose(fid);                           % close datafile 
s_init=length(x);                         % number of samples 
mu1=mean(x);                              % initial stats 
s1=std(x); 
fprintf(‘Before outliers are removed from %4i samples\n’, s_init) 
fprintf(‘mean = %4.3f m, sigma= %4.3f m\n’,mu1,s1) 
%------------------------ Remove Gross Errors ------------------------- 
s_init=length(x); 
for i=s_init:-1:1       % count down since vector gets shorter 
    if( abs(x(i))>4*s1 ) 
        x(i)=[]; 
    end 
end 
s_final=length(x); 
mu2=mean(x);                           % calc new stats 
s2=std(x); 
Pge=(s_init-s_final)/s_init; 
fprintf(‘\nAfter %2i outliers are removed\n’,s_init-s_final) 
fprintf(‘mean = %4.3f m, sigma= %4.3f m\n’,mu2,s2) 
%---------------------- Calc CDF -------------------------------------- 
x=sort(x); 
for i=1:s_final 
    CDF_data(i)=i/s_final; 
end 
%- ------------Call FMINSEARCH to fit the data -----------------------  
Starting=[0.5 0.0 0.0 1.0 5.0];             % w1, mu1, mu2, s1, s2 
options=optimset(‘MaxFunEvals’,5000); 
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Estimates=fminsearch(@DN_myfit,Starting,options,x,CDF_data); 
  
% ------------- Predict CDF data using estimated parameters  ---------- 
w1e=Estimates(1); 
mu1e=Estimates(2); 
mu2e=Estimates(3); 
s1e=Estimates(4); 
s2e=Estimates(5); 
cdf1=cdf(‘Normal’,x,mu1e,s1e); 
cdf2=cdf(‘Normal’,x,mu2e,s2e); 
  
CDF_pred=w1e*cdf1+(1-w1e)*cdf2; 
fprintf(‘\nCalling curve fit to the CDF data....\n’) 
fprintf(‘weighting factor = %4.3f\n’,w1e) 
fprintf(‘mean1 = %4.3f m, sigma1= %4.3f m\n’,mu1e,s1e) 
fprintf(‘mean2 = %4.3f m, sigma2= %4.3f m\n’,mu2e,s2e) 
  
% ----------------- Plot the CDF, data and predicted ----------------- 
subplot(2,1,2); 
plot(x,CDF_data);         % plot data 
hold on; 
xlimit=10; 
axis([-xlimit xlimit 0 1]); 
subplot(2,1,2) 
plot(x,CDF_pred,’--’);      % plot predicted  
xlabel(‘x’) 
ylabel(‘F(X)’) 
title(‘Cumulative density function F(X)’) 
grid on; 
hold off; 
%---------------------- Plot the histogram of data-------------------- 
nbins = 100; 
[h, centres] = hist(x, nbins); 
% normalise to unit area 
norm_h = h / (numel(x) * (centres(2)-centres(1))); 
subplot(2,1,1) 
plot(centres, norm_h);      
hold on; 
  
% ----------------compute and display double normal PDF --------------- 
pdf1=pdf(‘Normal’,x,mu1e,s1e); 
pdf2=pdf(‘Normal’,x,mu2e,s2e); 
PDF_pred=w1e*pdf1+(1-w1e)*pdf2; 
plot(x,PDF_pred,’--’);                         % plot data  
hold on; 
xlabel(‘x’)                                    % label axes 
ylabel(‘f(x)’) 
title(‘Probability density function f(x)’) 
grid on 
hold off;  
%---------------- KS test ---------------------------------------- 
CDF_test=[CDF_data’,CDF_pred’];       % form the CDF vector for the KS 
test 
for conf_level=95:-5:60 
    [h,p,ksstat,cv]=kstest(CDF_data’,CDF_test,1-conf_level/100); 
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    if h==1 
        fprintf(‘\nTest for CDF fit FAILS at the %2i percent confidence 
level’,conf_level) 
    else 
        fprintf(‘\nTest for CDF fit PASSES at the %2i percent 
confidence level’,conf_level) 
        break 
    end 
end 
fprintf(‘\n’) 
diary off 

1. MATLAB CODE DN_myfit 

function sse=myfit(params,Input,Actual_Output) 
w1f=params(1); 
mu1f=params(2); 
mu2f=params(3); 
s1f=params(4); 
s2f=params(5); 
cdf1=cdf(‘Normal’,Input,mu1f,s1f); 
cdf2=cdf(‘Normal’,Input,mu2f,s2f); 
  
Fitted_Curve=w1f*cdf1+(1-w1f)*cdf2; 
  
Error_Vector=Fitted_Curve - Actual_Output; 
  
% Minimize the sum of squares error 
sse=sum(Error_Vector.^2); 

B. MATLAB CODE – DR_CDF_DATA 

% This program reads radial miss distance data and 
% then fits a double Rayleigh distribution in order to determine the  
% distribution stats. The resulting PDF, CDF and data are plotted  
  
clc, clf, clear all 
  
[FileEx,PathEx] = uigetfile(‘*.txt’,’Select the Data File to 
evaluate’); 
ExPath = [PathEx FileEx]; 
handles.ExPath = ExPath; 
  
diary DR_data.txt; 
%--------------- Read in all the radial miss distance data ------------ 
s=ExPath; 
fid=fopen(s);                         % open the data file 
x=fscanf(fid,’%f’,[1,inf]);           % read entire data file 
ST=fclose(fid);                       % close data file 
s_init=length(x);                     % number of samples 
mu1=mean(x);                          % initial stats 
s1=std(x)/.655; 
median_r=median(x); 
x=sort(x); 
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fprintf(‘Before outliers are removed from %4i samples\n’, s_init) 
fprintf(‘mean = %4.3f m, sigma = %4.3f m, median = 
%4.3f\n’,mu1,s1,median_r) 
%------------------------ Remove Gross Errors ------------------------- 
s_init=length(x); 
for i=s_init:-1:1       % count down since vector gets shorter 
    if( abs(x(i))>4*s1 ) 
        x(i)=[]; 
    end 
end 
s_final=length(x); 
mu2=mean(x);                           % calc new stats 
s2=std(x)/.655; 
median_r=median(x); 
Pge=(s_init-s_final)/s_init; 
fprintf(‘\nAfter %2i outliers are removed\n’,s_init-s_final) 
fprintf(‘mean = %4.3f m, sigma = %4.3f m, median = 
%4.3f\n’,mu2,s2,median_r) 
%---------------------- Calc CDF_data --------------------------------- 
for i=1:s_final 
    CDF_data(i)=i/s_final; 
end 
%-------------Call FMINSEARCH to fit the data ------------------------ 
fprintf(‘\nCalling curve fit to the CDF data....\n’) 
Starting=[0.5 1.0 5.0];             % initial gess for w1, s1, s2 
options=optimset(‘MaxFunEvals’,5000); 
Estimates=fminsearch(@DR_myfit,Starting,options,x,CDF_data); 
% ------------- Predict CDF data using estimated parameters  ---------- 
w1e=Estimates(1); 
s1e=Estimates(2); 
s2e=Estimates(3); 
cdf1=raylcdf(x,s1e);            
cdf2=raylcdf(x,s2e); 
CDF_pred=w1e*cdf1+(1-w1e)*cdf2; 
fprintf(‘weighting factor = %4.3f\n’,w1e) 
fprintf(‘sigma1= %4.3f m\n’,s1e) 
fprintf(‘sigma2= %4.3f m\n’,s2e) 
% ----------------- Plot the CDF, data and predicted ------------------ 
subplot(2,1,2); 
plot(x,CDF_data);         % plot data 
hold on; 
%plot(x,cdf1,’g’) 
%plot(x,cdf2,’g’) 
  
xlimit=20; 
subplot(2,1,2) 
plot(x,CDF_pred,’r’);      % plot predicted  
axis([0 xlimit 0 1.0]); 
  
xlabel(‘r’) 
ylabel(‘F(R)’) 
title(‘Cumulative density function (CDF)’) 
grid on; 
hold off; 
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%---------------------- Plot the histogram of data--------------------- 
nbins = 100; 
[h, centres] = hist(x, nbins); 
% normalise to unit area 
norm_h = h / (numel(x) * (centres(2)-centres(1))); 
subplot(2,1,1) 
plot(centres, norm_h);  
axis([0 xlimit 0 0.4]); 
hold on; 
% ----------------compute and display double Rayleigh PDF ------------- 
pdf1=x./(s1e*s1e).*exp(-x.*x/(2*s1e*s1e)); 
pdf2=x./(s2e*s2e).*exp(-x.*x/(2*s2e*s2e)); 
PDF_pred=w1e*pdf1+(1-w1e)*pdf2; 
axis([0 xlimit 0 0.4]); 
plot(x,PDF_pred,’r’);                    
hold on; 
%plot(x,pdf1,’g’) 
%plot(x,pdf2,’g’) 
xlabel(‘r’)                                   
ylabel(‘f(r)’) 
title(‘Probability density function (PDF)’) 
grid on 
hold off; 
%---------------- KS test ---------------------------------------- 
CDF_test=[CDF_data’,CDF_pred’];     %  form the CDF vector for the KS 
test 
% conf_level=0.95; 
for conf_level=95:-5:60 
    [h,p,ksstat,cv]=kstest(CDF_data’,CDF_test,1-conf_level/100); 
    if h==1 
        fprintf(‘\nTest for CDF fit FAILS at the %2i percent confidence 
level’,conf_level) 
    else 
        fprintf(‘\nTest for CDF fit PASSES at the %2i percent 
confidence level’,conf_level) 
        break 
    end 
end 
fprintf(‘\n’) 
diary off 
 

1. MATLAB CODE DR_myfit 

function sse=myfit(params,Input,Actual_Output) 
w1f=params(1); 
s1f=params(2); 
s2f=params(3); 
Fitted_Curve=1-w1f.*exp(-Input.*Input/(2*s1f*s1f))-(1-w1f).*exp(-
Input.*Input/(2*s2f*s2f)); 
Error_Vector=Fitted_Curve - Actual_Output; 
% When curvefitting, a typical quantity to 
% minimize is the sum of squares error 
sse=sum(Error_Vector.^2); 
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C. MATLAB CODE – GE_EXTRACT_XY 

% This program reads X,Y miss distance data, extracts the gross errors 
% and then writes a file of the remaining data for further analysis 
  
clc, clear all 
[FileEx,PathEx] = uigetfile(‘*.txt’,’Select the Data File to 
evaluate’); 
ExPath = [PathEx FileEx]; 
handles.ExPath = ExPath; 
  
diary GE_extractXY.txt; 
  
fprintf(‘\n\n----------------------------------------------------------
------------- ‘) 
fprintf(‘\n---------This program extracts gross errors from an input 
file--------- ‘) 
fprintf(‘\n------------------------------------------------------------
-----------’) 
%--------------- Read in all the X, Y miss distance data -------------- 
s_in=ExPath; 
fid=fopen(s_in);                         % open the data file 
Temp =fscanf(fid,’%f’,[2,inf]);           % read entire data file 
Temp = Temp’; 
x = Temp(:,1); 
y = Temp(:,2); 
x = x’; 
y = y’; 
ST=fclose(fid);                       % close datafile 
initial_size = length(x); 
%----------------Calculate initial Non-parametric data for X ----------                 
sx_init=length(x);                     % number of samples 
mux1=mean(x);                          % initial stats 
sx1=std(x); 
sigma_xl=sx1/0.6551; 
median_x=median(x); 
len_data=sx_init; 
 fprintf(‘\n----------------------Non-parametric data for Range--------
------------’) 
fprintf(‘\nBefore outliers are removed from %4i samples, \n’, sx_init); 
fprintf(‘mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f 
m\n’,mux1,sx1,median_x); 
%----------------Calculate initial Non-parametric data for X ----------                 
sy_init=length(y);                     % number of samples 
muy1=mean(y);                          % initial stats 
sy1=std(y); 
sigma_yl=sy1/0.6551; 
median_y=median(y); 
len_data=sy_init; 
 fprintf(‘\n----------------------Non-parametric data for Deflection---
------------’) 
fprintf(‘\nBefore outliers are removed from %4i samples, \n’, sy_init) 
fprintf(‘mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f 
m\n’,muy1,sy1,median_y) 
%------------------------ Remove Gross Errors From X ------------------ 



 93

j=1; 
sum=0; 
%sigma_l=s1; 
while j<100 
  
    s_init=length(x); 
    num_sigma=4; 
    for i=s_init:-1:1       % count down since vector gets shorter 
        if( abs(x(i))>num_sigma*sigma_xl) 
            x(i)=[]; 
            y(i)=[];   %remove the corresponding coordinate in y 
        end 
    end 
    s_final=length(x); 
    mu=mean(x);                           % calc new stats 
    sigma_r=std(x); 
    median_r=median(x); 
    sigma_xl=sigma_r/0.655; 
    Pge=(s_init-s_final)/s_init; 
    x_max=max(x); 
    delta=s_init-s_final; 
    sum=sum+delta; 
        if(delta<1)  
            break 
        end 
    j=j+1; 
    sum; 
end 
%fprintf(‘\n\n-------------------Interate over the Deflection data-----
--------------’); 
s_init=length(y);                     % number of samples 
mu1=mean(y);                          % initial stats 
s1=std(y); 
sigma_l=s1/0.6551; 
median_r=median(y); 
len_data=s_init; 
%------------------------ Remove Gross Errors From Y ------------------ 
j=1; 
sum=0; 
%sigma_l=s1; 
while j<100 
    s_init=length(y); 
    num_sigma=3; 
    for i=s_init:-1:1       % count down since vector gets shorter 
        if( abs(y(i))>num_sigma*sigma_yl) 
            x(i)=[];    %remove the entries in both x and y vectors 
            y(i)=[]; 
        end 
    end 
    s_final=length(y); 
    mu=mean(y);                           % calc new stats 
    sigma_r=std(y); 
    median_r=median(y); 
    sigma_yl=sigma_r/0.655; 
    Pge=(s_init-s_final)/s_init; 
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    y_max=max(y); 
    delta=s_init-s_final; 
    sum=sum+delta; 
        if(delta<1)  
            break 
        end 
    j=j+1; 
    sum; 
end 
%Final Statistics X 
sx_final=length(x);                     % number of samples 
muxf=mean(x);                          % initial stats 
sxf=std(x); 
sigma_xf=sxf/0.6551; 
median_xf=median(x); 
len_data=sx_final; 
%Final Statistics Y 
sy_final=length(y);                     % number of samples 
muyf=mean(y);                          % initial stats 
syf=std(y); 
sigma_yf=sy1/0.6551; 
median_y=median(y); 
len_data=sy_init; 
  
num_error = initial_size - length(x); 
  
fprintf(‘\n------------------------------------------------------------
-----------’) 
fprintf(‘\n------------------------------------------------------------
-----------’) 
fprintf(‘\n\n----------------------Final statistics--------------------
------------- \n’) 
fprintf(‘Number of Gross errors removed = %4.3f, P_GE = %4.3f’, 
num_error, num_error/initial_size) 
fprintf(‘\n\n----------------------Final data for Range----------------
-------------’) 
fprintf(‘\n mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f 
m\n’,muxf,sigma_xf,median_xf)  
fprintf(‘\n----------------------Final data for Deflection-------------
-----------’) 
fprintf(‘\n mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f 
m\n\n’,muyf,sigma_yf,median_y) 
A = [x;y]; 
A = A’; 
%---------------------write residual file------------------------------ 
s_out=‘GE_extract_output_file_range.txt’; 
fid=fopen(s_out,’w’); 
dlmwrite(s_out, x’, ‘delimiter’, ‘\t’,’precision’, 6) 
fclose(fid); 
s_out=‘GE_extract_output_file_deflection.txt’; 
fid=fopen(s_out,’w’); 
dlmwrite(s_out, y’, ‘delimiter’, ‘\t’,’precision’, 6) 
fclose(fid);  
diary off 
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D. MATLAB CODE – SN_CDF_DATA 

% This program reads single normally distributed data and 
% then fits a distribution to the CDF in order to recover the original  
% distribution stats. The PDF and data are also plotted  
  
clc, clf, clear all 
[FileEx,PathEx] = uigetfile(‘*.txt’,’Select the Data File to 
evaluate’); 
ExPath = [PathEx FileEx]; 
handles.ExPath = ExPath; 
  
diary SN_data.txt; 
  
%--------------- Read in all the linear miss distance data ------------ 
%s=input(‘Type in the name of the file to be analyzed (incl. path and 
extension): \n\n’, ‘s’); 
s=ExPath; 
fid=fopen(s);                         % open the data file 
x=fscanf(fid,’%f’,[1,inf]);           % read entire data file 
ST=fclose(fid);                       % close datafile 
s_init=length(x);                     % number of samples 
mu1=mean(x);                          % initial stats 
s1=std(x); 
fprintf(‘Before outliers are removed from %4i samples\n’, s_init) 
fprintf(‘mean = %4.3f m, sigma= %4.3f m\n’,mu1,s1) 
%--------------------- Remove Gross Errors ---------------------------- 
s_init=length(x); 
for i=s_init:-1:1       % count down since vector gets shorter 
    if( abs(x(i))>4*s1 ) 
        x(i)=[]; 
    end 
end 
s_final=length(x); 
mu2=mean(x);                           % calc new stats 
s2=std(x); 
Pge=(s_init-s_final)/s_init; 
fprintf(‘\nAfter %2i outliers are removed\n’,s_init-s_final) 
fprintf(‘mean = %4.3f m, sigma= %4.3f m\n’,mu2,s2) 
%---------------------- Calc CDF -------------------------------------- 
x=sort(x); 
for i=1:s_final 
    miss(i)=x(i); 
    CDF_data(i)=i/s_final; 
end 
% -----------Plot the CDF data to be curve fitted  -------------------- 
subplot(2,1,2); 
plot(miss,CDF_data);  
hold on; 
  
limit=floor(s_final/2); 
for i=1:s_final 
    CDF_pred(i)=cdf(‘Normal’,miss(i),mu2,s2); 
end 
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xlimit=10; 
axis([-xlimit xlimit 0 1]); 
subplot(2,1,2) 
plot(x,CDF_pred,’--’);     % compare data with predicted function 
title(‘Cumulative density function F(X)’) 
xlabel(‘x’) 
ylabel(‘F(X)’) 
grid on; 
hold off; 
  
CDF_test=[miss’,CDF_pred’];     % form the CDF test vector for KStest 
  
%---------------------- Plot the PDF  and data------------------------ 
% compute and display histogram of raw data with unity area using web 
code 
nbins = 100; 
[h, centres] = hist(x, nbins); 
% normalise to unit area 
norm_h = h / (numel(x) * (centres(2)-centres(1))); 
subplot(2,1,1) 
plot(centres, norm_h); 
hold on; 
% compute and display normal PDF based on statistics of raw data 
for i=1:s_final 
    PDF_pred(i)=pdf(‘Normal’,miss(i),mu2,s2); 
end 
plot(x,PDF_pred,’--’);                            
hold on; 
title(‘Probability density function f(x)’) 
xlabel(‘x’)                                    
ylabel(‘f(x)’) 
grid on 
hold off; 
%---------------- KS test --------------------------------------------- 
CDF_test=[CDF_data’,CDF_pred’];       % form the CDF vector for the KS 
test 
for conf_level=95:-5:60 
    [h,p,ksstat,cv]=kstest(CDF_data’,CDF_test,1-conf_level/100); 
    if h==1 
        fprintf(‘\nTest for CDF fit FAILS at the %2i percent confidence 
level’,conf_level) 
    else 
        fprintf(‘\nTest for CDF fit PASSES at the %2i percent 
confidence level’,conf_level) 
        break 
    end 
end 
fprintf(‘\n’) 
fprintf(‘\nError probable=%3f\n\n’,s2*0.6745) 
  
diary of 

E. MATLAB CODE – SR_CDF_DATA 

% This program reads radial miss distance data and 
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% then fits a single Rayleigh distribution in order to determine the  
% distribution stats. The resulting PDF, CDF and data are plotted  
  
clc, clf, clear all 
  
[FileEx,PathEx] = uigetfile(‘*.txt’,’Select the Data File to 
evaluate’); 
ExPath = [PathEx FileEx]; 
  
handles.ExPath = ExPath; 
  
diary SR_data.txt; 
  
%--------------- Read in all the radial miss distance data ------------ 
s=ExPath; 
fid=fopen(s);                         % open the data file 
x=fscanf(fid,’%f’,[1,inf]);           % read entire data file 
ST=fclose(fid);                       % close datafile 
s_init=length(x);                     % number of samples 
mu1=mean(x);                          % initial stats 
s1=std(x)/.655; 
median_r=median(x); 
fprintf(‘-----------------Non-parametric data-----------------------’) 
fprintf(‘\nBefore outliers are removed from %4i samples\n’, s_init) 
fprintf(‘mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f 
m\n’,mu1,s1,median_r) 
  
%------------------------ Remove Gross Errors ------------------------- 
s_init=length(x); 
num_sigma=4; 
for i=s_init:-1:1       % count down since vector gets shorter 
    if( abs(x(i))>num_sigma*s1 ) 
        x(i)=[]; 
    end 
end 
s_final=length(x); 
mu=mean(x);                           % calc new stats 
sigma_r=std(x)/.655; 
median_r=median(x); 
sigma_l=sigma_r; 
Pge=(s_init-s_final)/s_init; 
x_max=max(x); 
x=sort(x); 
fprintf(‘\nAfter %2i outliers are removed\n’,s_init-s_final) 
fprintf(‘mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f 
m\n’,mu,sigma_r,median_r) 
  
% compute and display histogram of data with unity area using web code 
nbins = 100; 
[h, centres] = hist(x, nbins); 
% normalise to unit area 
norm_h = h / (numel(x) * (centres(2)-centres(1))); 
subplot(2,1,1) 
plot(centres, norm_h); 
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hold on; 
%   Now plot the theoretical Rayleigh PDF 
PDF_pred=(x/(sigma_l*sigma_l)).*exp(-x.*x/(2*sigma_l*sigma_l));   
plot(x,PDF_pred,’r’) 
title(‘Probability density function f(x)’) 
xlabel(‘x’)                                     
ylabel(‘f(x)’) 
grid 
hold off 
  
%---------------------- Calc and plot CDF ----------------------------- 
for i=1:s_final 
    CDF_data(i)=i/s_final; 
end 
  
CDF_pred=1-exp(-x.*x/(2*sigma_l*sigma_l));  % now the predicted 
subplot(2,1,2); 
plot(x,CDF_data);  
hold on; 
plot(x,CDF_pred,’r’) 
title(‘Cumulative density function F(X)’) 
xlabel(‘x’)                                    
ylabel(‘F(X)’) 
grid 
hold off 
  
%---------------- Extract the sigma_l from the data------------------- 
fprintf(‘------------------Rayleigh fitted data---------------------’) 
[sigma_fit,PCI]=raylfit(x) 
%fprintf(‘From fitted data: sigma_’) 
  
%---------------- KS test --------------------------------------------- 
CDF_test=[CDF_data’,CDF_pred’];  % form the CDF vector for the KS test 
for conf_level=95:-5:60 
    [h,p,ksstat,cv]=kstest(CDF_data’,CDF_test,1-conf_level/100); 
    if h==1 
        fprintf(‘\nTest for CDF fit FAILS at the %2i percent confidence 
level’,conf_level) 
    else 
        fprintf(‘\nTest for CDF fit PASSES at the %2i percent 
confidence level’,conf_level) 
        break 
    end 
end 
fprintf(‘\n\n’) 
  
diary off; 

F. MATLAB CODE – GE_EXTRACT 

% This program reads radial miss distance data, extracts the gross 
%errors and then writes a file of the remaining data for further 
%analysis 
clc, clear all 
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[FileEx,PathEx] = uigetfile(‘*.txt’,’Select the Data File to 
evaluate’); 
ExPath = [PathEx FileEx]; 
handles.ExPath = ExPath; 
  
diary GE_extract.txt; 
  
fprintf(‘\n\n------------------------------------------------------- ‘) 
fprintf(‘\n---This program extracts gross errors from an input file--’) 
fprintf(‘\n----------------------------------------------------------’) 
  
%--------------- Read in all the radial miss distance data ------------ 
s_in=ExPath; 
fid=fopen(s_in);                         % open the data file 
x=fscanf(fid,’%f’,[1,inf]);           % read entire data file 
ST=fclose(fid);                       % close datafile 
s_init=length(x);                     % number of samples 
mu1=mean(x);                          % initial stats 
s1=std(x); 
sigma_l=s1/0.6551; 
median_r=median(x); 
len_data=s_init; 
% fprintf(‘----------------------Non-parametric data-----------------’) 
fprintf(‘\nBefore outliers are removed from %4i samples, \n’, s_init) 
fprintf(‘mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f 
m\n’,mu1,s1,median_r) 
%------------------------ Remove Gross Errors ----------------------- 
j=1; 
sum=0; 
%sigma_l=s1; 
while j<100 
    s_init=length(x); 
    num_sigma=3; 
    for i=s_init:-1:1       % count down since vector gets shorter 
        if( abs(x(i))>num_sigma*sigma_l) 
            x(i)=[]; 
        end 
    end 
    s_final=length(x); 
    mu=mean(x);                           % calc new stats 
    sigma_r=std(x); 
    median_r=median(x); 
    sigma_l=sigma_r/0.655; 
    Pge=(s_init-s_final)/s_init; 
    x_max=max(x); 
    x=sort(x); 
    delta=s_init-s_final; 
    sum=sum+delta; 
        if(delta<1)  
            break 
        end 
    fprintf(‘\nIteration #%2i, after %2i outliers are removed, 
\n’,j,delta) 
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    fprintf(‘mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f m, #GE 
= %3i\n’,mu,sigma_r,median_r, sum) 
    j=j+1; 
    sum; 
end 
fprintf(‘\n\n-----------------------Final statistics-------------- \n’) 
fprintf(‘mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f m, P_GE = 
%4.3f\n\n’,mu,sigma_r,median_r, sum/len_data) 
  
%---------------------write residual file----------------------------- 
s_out=‘GE_extract_output_file.txt’; 
fid=fopen(s_out,’w’); 
fprintf(fid,’%5.2f\r\n’,x); 
fclose(fid); 
  
diary off 
 

G. MATLAB CODE - PHIT/PNM 

% modified method for Phit and Pnm 
% This script takes in 3 column vectors: 1- range, 2- deflections 
% 3 - radial miss distances and returns Phit, Pnm, and CEP 
  
clc, clf, clear all 
  
[FileEx,PathEx] = uigetfile(‘*.txt’,’Select the Data File to 
evaluate’); 
ExPath = [PathEx FileEx]; 
  
handles.ExPath = ExPath; 
  
diary PHIT_PNM.txt; 
  
s_in=ExPath; 
fid=fopen(s_in);                         % open the data file 
Temp =fscanf(fid,’%f’,[3,inf]);           % read entire data file 
Temp = Temp’ 
Temp = sortrows(Temp,3); 
Temp = flipud(Temp); 
A = sort(Temp,3); 
x = Temp(:,1); 
y = Temp(:,2); 
z = Temp(:,3); 
x = x’; 
y = y’; 
z = z’; 
ST=fclose(fid);                       % close datafile 
  
begin_size =length(z); 
num_error=0; 
while j <100 
x_avg = std(x); 
y_avg = std(y); 
sigma = (x_avg+y_avg)/2; 
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error = 4*sigma; 
  
 s_init=length(x); 
    for i=s_init:-1:1       % count down since vector gets shorter 
        if( abs(z(i))>error) 
            x(i)=[]; 
            y(i)=[];  
            z(i)=[]; 
        end 
    end 
    s_final=length(x); 
    Pge=(s_init-s_final)/s_init; 
    x_max=max(x); 
    delta=s_init-s_final; 
    num_error=num_error+delta; 
        if(delta<1)  
            break 
        end 
    j=j+1; 
    num_error; 
end 
  
MPI_x = mean(x); 
MPI_y = mean(y); 
  
num_hit = 0; 
num_impact = begin_size-num_error; 
g=0; 
while g< 1000 
   x_avg = std(x); 
   y_avg = std(y); 
   sigma = (x_avg+y_avg)/2 
   bound = .5*sigma 
   estimate = round(0.1175*length(z)); 
   size_z = length(z); 
   count =0;  
    for h=1:size_z     
       if z(h)<= bound 
            count = count+1; 
       end 
    end 
  
    if count >= estimate 
        temp = count- estimate; 
        stop = size_z-temp+1; 
        for p=size_z:-1:stop 
        %for p=1:temp 
             
            x(p)=[]; 
            y(p)=[];  
            z(p)=[]; 
        end 
    
    end 
    if count <=estimate 
        break; 
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    end 
    g = g+1; 
end 
num_hit = num_impact-length(z); 
num_nm = begin_size-num_error-num_hit; 
CEP = 1.1774*sigma; 
  
fprintf(‘\n Sample size = %4.3f ‘, begin_size); 
fprintf(‘\n Nhit = %4.3f ‘, num_hit); 
fprintf(‘\n Nnm = %4.3f ‘, num_nm); 
fprintf(‘\n Nge = %4.3f ‘, num_error); 
fprintf(‘\n Phit = %4.3f ‘, num_hit/begin_size); 
fprintf(‘\n Pnm = %4.3f ‘, num_nm/begin_size); 
fprintf(‘\n Pge = %4.3f ‘, num_error/begin_size); 
fprintf(‘\n CEP = %4.3f ‘, CEP); 
fprintf(‘\n’); 
diary off    

H. MATLAB CODE – GE_EXTRACT_GAUSSIAN 

% This program reads miss distance data, extracts the gross errors 
% and then writes a file of the remaining data for further analysis 
clc, clear all 
  
[FileEx,PathEx] = uigetfile(‘*.txt’,’Select the Data File to 
evaluate’); 
ExPath = [PathEx FileEx]; 
handles.ExPath = ExPath; 
  
diary GE_extract.txt; 
  
fprintf(‘\n\n----------------------------------------------------------
------------- ‘) 
fprintf(‘\n---------This program extracts gross errors from an input 
file--------- ‘) 
fprintf(‘\n------------------------------------------------------------
-----------’) 
  
%--------------- Read in all the radial miss distance data ------------
---- 
s_in=ExPath; 
fid=fopen(s_in);                         % open the data file 
x=fscanf(fid,’%f’,[1,inf]);           % read entire data file 
ST=fclose(fid);                       % close datafile 
s_init=length(x);                     % number of samples 
mu1=mean(x);                          % initial stats 
s1=std(x); 
sigma_l=s1/0.6551; 
median_r=median(x); 
len_data=s_init; 
% fprintf(‘----------------------Non-parametric data-------------------
----’) 
fprintf(‘\nBefore outliers are removed from %4i samples, \n’, s_init) 
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fprintf(‘mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f 
m\n’,mu1,s1,median_r) 
%------------------------ Remove Gross Errors -------------------------
---- 
j=1; 
sum=0; 
%sigma_l=s1; 
while j<100 
    s_init=length(x); 
    num_sigma=3; 
    for i=s_init:-1:1       % count down since vector gets shorter 
        if( abs(x(i))>num_sigma*sigma_l) 
            x(i)=[]; 
        end 
    end 
    s_final=length(x); 
    mu=mean(x);                           % calc new stats 
    sigma_r=std(x); 
    median_r=median(x); 
    sigma_l=sigma_r/0.655; 
    Pge=(s_init-s_final)/s_init; 
    x_max=max(x); 
    x=sort(x); 
    delta=s_init-s_final; 
    sum=sum+delta; 
        if(delta<1)  
            break 
        end 
    fprintf(‘\nIteration #%2i, after %2i outliers are removed, 
\n’,j,delta) 
    fprintf(‘mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f m, #GE 
= %3i\n’,mu,sigma_r,median_r, sum) 
    j=j+1; 
    sum; 
end 
fprintf(‘\n\n-----------------------Final statistics-------------------
--------- \n’) 
fprintf(‘mean = %4.3f m, sigma_rad = %4.3f m, median = %4.3f m, P_GE = 
%4.3f\n\n’,mu,sigma_r,median_r, sum/len_data) 
  
%---------------------write residual file------------------------------
---- 
s_out=‘GE_extract_output_file.txt’; 
fid=fopen(s_out,’w’); 
fprintf(fid,’%5.2f\r\n’,x); 
fclose(fid); 
  
diary off 
 

I. GPS WEAPON ACCURACY CALCULATOR 

%% Define Variable 
sat_clock = .78; 
ephemeris = .78; 
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tropos = .5; 
ionos = 1.0; 
noise = .4; 
multipath=.5; 
hdop = 1.3; 
vdop= 2.0; 
  
gdop = sqrt(hdop^2+vdop^2); 
  
reciever = sqrt(ionos^2+tropos^2+noise^2+multipath^2); 
space_clock = sqrt(sat_clock^2+ephemeris^2); 
  
RSS_bias = sqrt(sat_clock^2+ephemeris^2+tropos^2+ionos^2); 
RSS_rand = sqrt(noise^2+multipath^2); 
  
UERE = sqrt(RSS_bias^2+RSS_rand^2); 
  
%%Horizontal Error 
nav_bias_h = (RSS_bias*hdop)/sqrt(2); 
nav_rand_h= (RSS_rand*hdop)/sqrt(2); 
nav_tot_h= sqrt(nav_bias_h^2+ nav_rand_h^2); 
  
gc_bias_h =0; 
gc_rand_h=.59; 
gc_tot_h=sqrt(gc_bias_h^2+ gc_rand_h^2); 
  
tle_bias_h = 0; 
tle_rand_h=0; 
tle_tot_h=sqrt(tle_bias_h^2+ tle_rand_h^2); 
  
rss_bias_h = sqrt(nav_bias_h^2+ gc_bias_h^2+tle_bias_h^2); 
rss_rand_h=sqrt(nav_rand_h^2+ gc_rand_h^2+tle_rand_h^2); 
rss_tot_h= sqrt(rss_bias_h^2+rss_rand_h^2); 
  
%%Vertical Error 
nav_bias_v = (RSS_bias*vdop); 
nav_rand_v= (RSS_rand*vdop); 
nav_tot_v= sqrt(nav_bias_v^2+ nav_rand_v^2); 
  
gc_bias_v =0; 
gc_rand_v=.59; 
gc_tot_v=sqrt(gc_bias_v^2+ gc_rand_v^2); 
  
tle_bias_v = 0; 
tle_rand_v=0; 
tle_tot_v=sqrt(tle_bias_v^2+ tle_rand_v^2); 
  
rss_bias_v = sqrt(nav_bias_v^2+ gc_bias_v^2+tle_bias_v^2); 
rss_rand_v=sqrt(nav_rand_v^2+ gc_rand_v^2+tle_rand_v^2); 
rss_tot_v= sqrt(rss_bias_v^2+rss_rand_v^2); 
  
%Generate a random impact angle 
sample = 10000; 
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average_impact = 78.5; 
std_dev_impact = 3.88; 
%impact_angle = randi([60 90], [1,sample]); 
impact_angle = unifrnd(70,90,1,sample); 
%sample =size(impact_angle); 
%impact_angle = normrnd(average_impact,std_dev_impact,[1,sample]); 
  
for i=1:sample 
    angle = impact_angle(i);  
    rep_bias = sqrt(rss_bias_h^2+(rss_bias_v/tan(degtorad(angle)))^2); 
    rep_rand = sqrt(rss_rand_h^2+(rss_rand_v/tan(degtorad(angle)))^2); 
    REP = sqrt(rep_bias^2+rep_rand^2) 
     
    dep_bias = rss_bias_h; 
    dep_rand = rss_rand_h; 
    DEP = sqrt(rss_bias_h^2+rss_rand_h^2) 
    sigma_x = REP/.6745; 
    sigma_y=DEP/.6745; 
    x(i) = 0+sigma_x*randn(1); 
    y(i) = sigma_y*randn(1); 
    r(i) = sqrt(x(i)^2+y(i)^2); 
end 
A=[x’ y’]; 
R = r’; 
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